magnitude

magnitude( QDataSet ds ) → QDataSet

return the magnitudes of vectors in a rank 1 or greater dataset (typically rank 2). The last index should be the cartesian dimension. For example,


 ds= getDataSet('http://autoplot.org/data/autoplot.cdf?BGSM') # BGSM[Epoch=24,cart=3]
 m= magnitude(ds)
For rank 0, this just returns the absolute value, but with the same units.

Parameters

ds - dataset of Rank N.

Returns:

dataset of Rank N-1.

See Also:

abs(QDataSet)


[search for examples] [view on GitHub] [view on old javadoc] [view source]

magnitude( Object ds1 ) → QDataSet

maybeCopy

maybeCopy( QDataSet ads0 ) → WritableDataSet

Copy the dataset to an ArrayDataSet only if the dataset is not already an ArrayDataSet or BufferDataSet. Note this does not consider the mutability of the data. If the dataset is not mutable, then the original data could be returned (probably).

Parameters

ads0 - a dataset.

Returns:

an ArrayDataSet or BufferDataSet

[search for examples] [view on GitHub] [view on old javadoc] [view source]


mean

mean( QDataSet ds ) → QDataSet

Mean function that returns the average of the valid elements of a rank N dataset

Parameters

ds - rank N dataset

Returns:

rank 0 dataset

See Also:

mode
median
variance(QDataSet)
meanAverageDeviation(QDataSet)


[search for examples] [view on GitHub] [view on old javadoc] [view source]

mean( Object o ) → QDataSet

meanAverageDeviation

meanAverageDeviation( QDataSet ds ) → QDataSet

return the Mean Average Deviation (MAD) of the rank N dataset. The result will contain the USER_PROPERTIES with a map containing the mean and number of points.

Parameters

ds - the rank N dataset.

Returns:

the rank 0 mean average deviation of the dataset.

See Also:

mean(QDataSet)
BinAverage#binMeanAverageDeviation(QDataSet, QDataSet)


[search for examples] [view on GitHub] [view on old javadoc] [view source]


median

median( Object o ) → QDataSet

Parameters

o - an Object

Returns:

org.das2.qds.QDataSet

[search for examples] [view on GitHub] [view on old javadoc] [view source]

median( QDataSet ds ) → QDataSet

medianFilter

medianFilter( QDataSet ds, int size ) → QDataSet

1-D median filter with a boxcar of the given size. The first size/2 elements, and the last size/2 elements are copied from the input.

Parameters

ds - rank 1 or rank 2 dataset. Future implementations may support higher rank data.
size - the boxcar size

Returns:

rank 1 or rank 2 dataset.

See Also:

smooth(QDataSet, int)


[search for examples] [view on GitHub] [view on old javadoc] [view source]


merge

merge( QDataSet ds1, QDataSet ds2 ) → QDataSet

Merge the two sorted rank N datasets, using their DEPEND_0 datasets, into one rank N dataset. If neither dataset has DEPEND_0, then this will use the datasets themselves. When ds1 occurs "before" ds2, then this is the same as concatenate. When there is a collision where two data points are coincident, use ds1[j]. This is fuzzy, based on the depend_0 cadence of ds1. When ds1 is null (or None), use ds2. Thanks to: http://stackoverflow.com/questions/5958169/how-to-merge-two-sorted-arrays-into-a-sorted-array

Parameters

ds1 - rank N dataset, or null.
ds2 - rank N dataset

Returns:

dataset of rank N with elements interleaved.

See Also:

concatenate(QDataSet, QDataSet)


[search for examples] [view on GitHub] [view on old javadoc] [view source]


mod

mod( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise mod of two datasets with compatible geometry. This should support Units.t2000 mod "24 hours" to get result in hours.

Parameters

ds1 - the numerator
ds2 - the divisor

Returns:

the remainder after the division

[search for examples] [view on GitHub] [view on old javadoc] [view source]

mod( Object ds1, Object ds2 ) → QDataSet

mode

mode( QDataSet ds ) → QDataSet

return the most frequently occurring element of the valid elements of a rank N dataset

Parameters

ds - rank N dataset.

Returns:

the rank 0 dataset

See Also:

mean
median


[search for examples] [view on GitHub] [view on old javadoc] [view source]


modp

modp( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise mod of two datasets with compatible geometry. This returns a positive number for -18 % 10. This is Python's behavior. This should support Units.t2000 mod "24 hours" to get result in hours.

Parameters

ds1 - the numerator
ds2 - the divisor

Returns:

the remainder after the division

[search for examples] [view on GitHub] [view on old javadoc] [view source]

modp( Object ds1, Object ds2 ) → QDataSet

monotonicSubset

monotonicSubset( QDataSet ds ) → MutablePropertyDataSet

ensure that there are no non-monotonic or repeat records, by removing the first N-1 records of N repeated records. Warning: this was extracted from AggregatingDataSource to support BufferDataSets, and is minimally implemented. When ds has property QDataSet.DEPEND_0, then this is used to identify the monotonic subset. When ds is a set of timetags, then these are used.

Parameters

ds - MutablePropertyDataSet, which must be writable.

Returns:

dataset, possibly with records removed.

[search for examples] [view on GitHub] [view on old javadoc] [view source]


multiply

multiply( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise multiply of two datasets with compatible geometry. Presently, either ds1 or ds2 should be dimensionless. TODO: units improvements.

Parameters

ds1 - a QDataSet
ds2 - a QDataSet

Returns:

a QDataSet

See Also:

multiplyUnits


[search for examples] [view on GitHub] [view on old javadoc] [view source]

multiply( Object ds1, Object ds2 ) → QDataSet