package org.das2.qds.ops; import java.awt.Color; import java.lang.reflect.Array; import java.security.NoSuchAlgorithmException; import java.util.logging.Level; import java.util.logging.Logger; import org.das2.qds.BundleDataSet.BundleDescriptor; import org.das2.qds.QubeDataSetIterator; import org.das2.datum.Datum; import org.das2.datum.EnumerationUnits; import org.das2.datum.TimeUtil; import org.das2.datum.Units; import org.das2.qds.math.fft.ComplexArray; import org.das2.qds.math.fft.GeneralFFT; import org.das2.qds.math.fft.WaveformToSpectrum; import java.text.ParseException; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Locale; import java.util.Map; import java.util.Map.Entry; import java.util.Random; import java.util.regex.Pattern; import org.das2.qds.buffer.BufferDataSet; import org.das2.datum.CacheTag; import org.das2.datum.DatumRange; import org.das2.datum.DatumRangeUtil; import org.das2.datum.DatumUtil; import org.das2.datum.InconvertibleUnitsException; import org.das2.datum.UnitsConverter; import org.das2.datum.UnitsUtil; import org.das2.math.filter.Butterworth; import org.das2.util.ClassMap; import org.das2.util.LoggerManager; import org.das2.util.monitor.CancelledOperationException; import org.das2.util.monitor.NullProgressMonitor; import org.das2.util.monitor.ProgressMonitor; import org.das2.util.monitor.SubTaskMonitor; import org.das2.util.monitor.UncheckedCancelledOperationException; import org.json.JSONException; import org.json.JSONObject; import org.das2.qds.AbstractDataSet; import org.das2.qds.ArrayDataSet; import org.das2.qds.demos.RipplesDataSet; import org.das2.qds.BundleDataSet; import org.das2.qds.CdfSparseDataSet; import org.das2.qds.ConstantDataSet; import org.das2.qds.DataSetOps; import org.das2.qds.DataSetUtil; import org.das2.qds.DDataSet; import org.das2.qds.DRank0DataSet; import org.das2.qds.DataSetIterator; import org.das2.qds.FDataSet; import org.das2.qds.IDataSet; import org.das2.qds.JoinDataSet; import org.das2.qds.LDataSet; import org.das2.qds.MutablePropertyDataSet; import org.das2.qds.QDataSet; import org.das2.qds.RankZeroDataSet; import org.das2.qds.ReplicateDataSet; import org.das2.qds.ReverseDataSet; import org.das2.qds.SDataSet; import org.das2.qds.SemanticOps; import org.das2.qds.TransposeRank2DataSet; import org.das2.qds.DataSetAnnotations; import static org.das2.qds.DataSetUtil.propertyNames; import org.das2.qds.IndexGenDataSet; import org.das2.qds.IndexListDataSetIterator; import org.das2.qds.SortDataSet; import org.das2.qds.SparseDataSet; import org.das2.qds.SubsetDataSet; import org.das2.qds.TailBundleDataSet; import org.das2.qds.TrimStrideWrapper; import org.das2.qds.WeightsDataSet; import org.das2.qds.WritableDataSet; import org.das2.qds.WritableJoinDataSet; import org.das2.qds.examples.Schemes; import org.das2.qds.util.AutoHistogram; import org.das2.qds.util.BinAverage; import org.das2.qds.util.DataSetBuilder; import org.das2.qds.util.FFTUtil; import org.das2.qds.util.LSpec; import org.das2.qds.util.LinFit; import org.das2.qds.math.Contour; import org.das2.util.ColorUtil; /** * A fairly complete set of operations for QDataSets, including binary operations * like "add" and "subtract", but also more abstract (and complex) operations like * smooth and fftPower. Most operations check data units and validity, but * consult the documentation for each function. * * These operations are all available in Jython scripts, and some, like add, are * connected to operator symbols like +. * * @author jbf */ public final class Ops { private static final Logger logger= LoggerManager.getLogger("qdataset.ops"); private static final String CLASSNAME = Ops.class.getCanonicalName(); /** * this class cannot be instantiated. */ private Ops() { } /** * UnaryOps are one-argument operations, such as sin, abs, and sqrt */ public interface UnaryOp { double op(double d1); } /** * apply the unary operation (such as "cos") to the dataset. * DEPEND_[0-3] is propagated. * @param ds1 the argument * @param op the operation for each element. * @return the result the the same geometry. */ public static MutablePropertyDataSet applyUnaryOp(QDataSet ds1, UnaryOp op) { //TODO: handle JOIN from RPWS group, which is not a QUBE... DDataSet result = DDataSet.create(DataSetUtil.qubeDims(ds1)); QDataSet wds= DataSetUtil.weightsDataSet(ds1); QubeDataSetIterator it1 = new QubeDataSetIterator(ds1); double fill= -1e38; while (it1.hasNext()) { it1.next(); double d1 = it1.getValue(ds1); double w1 = it1.getValue(wds); it1.putValue(result, w1==0 ? fill : op.op(d1)); } Map m= new HashMap<>(); m.put( QDataSet.DEPEND_0, ds1.property(QDataSet.DEPEND_0) ); m.put( QDataSet.DEPEND_1, ds1.property(QDataSet.DEPEND_1) ); m.put( QDataSet.DEPEND_2, ds1.property(QDataSet.DEPEND_2) ); m.put( QDataSet.DEPEND_3, ds1.property(QDataSet.DEPEND_3) ); m.remove( QDataSet.VALID_MIN ); m.remove( QDataSet.VALID_MAX ); m.remove( QDataSet.TITLE ); m.remove( QDataSet.LABEL ); m.remove( QDataSet.MONOTONIC ); m.remove( QDataSet.METADATA_MODEL ); m.remove( QDataSet.METADATA ); m.remove( QDataSet.BUNDLE_1 ); // because this contains FILL_VALUE, etc that are no longer correct. DataSetUtil.putProperties( m, result ); result.putProperty( QDataSet.FILL_VALUE, fill ); return result; } /** * apply the unary operation (such as "cos") to the dataset. * DEPEND_[0-3] is propagated. * @param ds1 the argument which can be converted to a dataset. * @param op the operation for each element. * @return the result the the same geometry. */ public static MutablePropertyDataSet applyUnaryOp(Object ds1, UnaryOp op) { return applyUnaryOp( dataset(ds1), op ); } /** * BinaryOps are operations such as add, pow, atan2 */ public interface BinaryOp { double op(double d1, double d2); } /** * these are properties that are propagated through operations. */ private static final String[] _dependProperties= new String[] { QDataSet.DEPEND_0, QDataSet.DEPEND_1, QDataSet.DEPEND_2, QDataSet.DEPEND_3, QDataSet.BINS_0, QDataSet.BINS_1, }; /** * apply the binary operator element-for-element of the two datasets, minding * dataset geometry, fill values, etc. The two datasets are coerced to * compatible geometry, if possible (e.g.Temperature[Time]+2deg), using * CoerceUtil.coerce. Structural metadata such as DEPEND_0 are preserved * where this is reasonable, and dimensional metadata such as UNITS are * dropped. * * @param ds1 the first argument * @param ds2 the second argument * @param op binary operation for each pair of elements * @return the result with the same geometry as the pair. */ public static MutablePropertyDataSet applyBinaryOp( QDataSet ds1, QDataSet ds2, BinaryOp op ) { //TODO: handle JOIN from RPWS group, which is not a QUBE... if ( ds1.rank()==ds2.rank() && ds1.rank()>0 ) { if ( ds1.length()!=ds2.length() ) { throw new IllegalArgumentException("binary operation on datasets of different lengths: "+ ds1 + " " + ds2 ); } } QDataSet[] operands= new QDataSet[2]; // if ( checkComplexArgument(ds1) || checkComplexArgument(ds2) ) { // if ( ds1.rank()!=ds2.rank() ) { // throw new IllegalArgumentException("complex numbers argument requires that rank must be equal."); // } // } // WritableDataSet result = CoerceUtil.coerce( ds1, ds2, true, operands ); QubeDataSetIterator it1 = new QubeDataSetIterator( operands[0] ); QubeDataSetIterator it2 = new QubeDataSetIterator( operands[1] ); QDataSet w1= DataSetUtil.weightsDataSet(operands[0]); QDataSet w2= DataSetUtil.weightsDataSet(operands[1]); double fill= -1e38; while (it1.hasNext()) { it1.next(); it2.next(); double d1 = it1.getValue(operands[0]); double d2 = it2.getValue(operands[1]); double w= it1.getValue(w1) * it2.getValue(w2); it1.putValue(result, w==0 ? fill : op.op(d1, d2)); } Map m1 = DataSetUtil.getProperties( operands[0], _dependProperties, null ); Map m2 = DataSetUtil.getProperties( operands[1], _dependProperties, null ); boolean resultIsQube= Boolean.TRUE.equals( m1.get(QDataSet.QUBE) ) || Boolean.TRUE.equals( m2.get(QDataSet.QUBE) ); if ( m1.size()==1 ) m1.remove( QDataSet.QUBE ); // kludge: CoerceUtil.coerce would copy over a QUBE property, so just remove this. if ( m2.size()==1 ) m2.remove( QDataSet.QUBE ); if ( ( m2.isEmpty() && !m1.isEmpty() ) || ds2.rank()==0 ) { m2.put( QDataSet.DEPEND_0, m1.get(QDataSet.DEPEND_0 ) ); m2.put( QDataSet.DEPEND_1, m1.get(QDataSet.DEPEND_1 ) ); m2.put( QDataSet.DEPEND_2, m1.get(QDataSet.DEPEND_2 ) ); m2.put( QDataSet.DEPEND_3, m1.get(QDataSet.DEPEND_3 ) ); m2.put( QDataSet.CONTEXT_0, m1.get(QDataSet.CONTEXT_0) ); m2.put( QDataSet.BINS_0, m1.get(QDataSet.BINS_0 ) ); m2.put( QDataSet.BINS_1, m1.get(QDataSet.BINS_1 ) ); } if ( ( m1.isEmpty() && !m2.isEmpty() ) || ds1.rank()==0 ) { m1.put( QDataSet.DEPEND_0, m2.get(QDataSet.DEPEND_0 ) ); m1.put( QDataSet.DEPEND_1, m2.get(QDataSet.DEPEND_1 ) ); m1.put( QDataSet.DEPEND_2, m2.get(QDataSet.DEPEND_2 ) ); m1.put( QDataSet.DEPEND_3, m2.get(QDataSet.DEPEND_3 ) ); m1.put( QDataSet.CONTEXT_0, m2.get(QDataSet.CONTEXT_0) ); m1.put( QDataSet.BINS_0, m2.get(QDataSet.BINS_0 ) ); m1.put( QDataSet.BINS_1, m2.get(QDataSet.BINS_1 ) ); } Map m3 = equalProperties(m1, m2); if ( resultIsQube ) { m3.put( QDataSet.QUBE, Boolean.TRUE ); } String[] ss= DataSetUtil.dimensionProperties(); for ( String s: ss ) { m3.remove( s ); } // because this contains FILL_VALUE, etc that are no longer correct. // My guess is that anything with a BUNDLE_1 property shouldn't have // been passed into this routine anyway. m3.remove( QDataSet.BUNDLE_1 ); DataSetUtil.putProperties(m3, result); result.putProperty( QDataSet.FILL_VALUE, fill ); return result; } /** * As with applyBinaryOp, but promote compatible objects to QDataSet first. * @param ds1 the first operand * @param ds2 the second operand * @param op binary operation for each pair of elements * @return the result with the same geometry as the pair. * @see #dataset(java.lang.Object) */ public static MutablePropertyDataSet applyBinaryOp( Object ds1, Object ds2, BinaryOp op ) { return applyBinaryOp( dataset(ds1), dataset(ds2), op ); } /** * returns the subset of two groups of properties that are equal, so these * may be preserved through operations. * @param m1 map of dataset properties, including DEPEND properties. * @param m2 map of dataset properties, including DEPEND properties. * @return the subset of two groups of properties that are equal */ public static HashMap equalProperties(Map m1, Map m2) { HashMap result = new HashMap(); for ( Entry e : m1.entrySet()) { String k= e.getKey(); Object v = e.getValue(); if (v != null ) { Object v2= m2.get(k); if ( v.equals(v2) ) { result.put(k, v); } else if ( ( v instanceof QDataSet ) && ( v2 instanceof QDataSet ) ) { if ( equivalent( (QDataSet)v, (QDataSet)v2 ) ) { result.put( k, v ); } } } } return result; } /** * returns the BinaryOp that handles the addition operation. Properties will have the units inserted. * @param ds1 the first operand * @param ds2 the second operand * @param properties the result properties * @return the BinaryOp that handles the addition operation. */ private static BinaryOp addGen( QDataSet ds1, QDataSet ds2, Map properties ) { Units units1 = SemanticOps.getUnits( ds1 ); Units units2 = SemanticOps.getUnits( ds2 ); BinaryOp result; if ( units2.isConvertibleTo(units1) && UnitsUtil.isRatioMeasurement(units1) ) { final UnitsConverter uc= UnitsConverter.getConverter( units2, units1); result= new BinaryOp() { @Override public double op(double d1, double d2) { return d1 + uc.convert(d2); } }; if ( units1!=Units.dimensionless ) properties.put( QDataSet.UNITS, units1 ); } else if ( UnitsUtil.isIntervalMeasurement(units1) ) { if ( UnitsUtil.isIntervalMeasurement(units2) ) { throw new IllegalArgumentException("two location units cannot be added: " + units1 + ", "+ units2 ); } if ( units2==Units.dimensionless && !UnitsUtil.isTimeLocation(units1) ) { units2= units1.getOffsetUnits(); } final UnitsConverter uc= UnitsConverter.getConverter( units2, units1.getOffsetUnits() ); result= new BinaryOp() { @Override public double op(double d1, double d2) { return d1 + uc.convert(d2); } }; properties.put( QDataSet.UNITS, units1 ); } else if ( UnitsUtil.isIntervalMeasurement(units2) ) { final UnitsConverter uc= UnitsConverter.getConverter( units1, units2.getOffsetUnits() ); result= new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) + d2; } }; properties.put( QDataSet.UNITS, units2 ); } else if ( UnitsUtil.isRatioMeasurement(units1) && units2.isConvertibleTo(Units.dimensionless) ) { result= new BinaryOp() { @Override public double op(double d1, double d2) { return d1 + d2; } }; properties.put( QDataSet.UNITS, units1 ); } else { throw new IllegalArgumentException("units cannot be added: " + units1 + ", "+ units2 ); } return result; } /** * add the two datasets which have the compatible geometry and units. For example, *
{@code
     *ds1=timegen('2014-10-15T07:23','60s',300)
     *ds2=dataset('30s')
     *print add(ds1,ds2)
     *}
* The units handling is quite simple, and this will soon change. * Note that the Jython operator + is overloaded to this method. * * @param ds1 a rank N dataset * @param ds2 a rank M dataset with compatible geometry * @return the element-wise sum of the two datasets. * @see #addGen(org.das2.qds.QDataSet, org.das2.qds.QDataSet, java.util.Map) addGen, which shows how units are resolved. */ public static QDataSet add(QDataSet ds1, QDataSet ds2) { Map props= new HashMap(); BinaryOp b= addGen( ds1, ds2, props ); MutablePropertyDataSet result= applyBinaryOp( ds1, ds2, b ); result.putProperty( QDataSet.UNITS, props.get(QDataSet.UNITS) ); result.putProperty(QDataSet.NAME, null ); result.putProperty(QDataSet.LABEL, maybeLabelInfixOp( ds1, ds2, "+" ) ); return result; } /** * add the two datasets which have the compatible geometry and units. * @param ds1 QDataSet, array, string, scalar argument * @param ds2 QDataSet, array, string, scalar argument with compatible geometry. * @return the element-wise sum of the two datasets. * @see #dataset(java.lang.Object) */ public static QDataSet add( Object ds1, Object ds2 ) { return add( dataset(ds1), dataset(ds2) ); } /** * subtract one dataset from another. * @param ds1 a rank N dataset * @param ds2 a rank M dataset with compatible geometry * @return the element-wise difference of the two datasets. */ public static QDataSet subtract(QDataSet ds1, QDataSet ds2) { Units units1 = SemanticOps.getUnits( ds1 ); Units units2 = SemanticOps.getUnits( ds2 ); MutablePropertyDataSet result; if ( units2.isConvertibleTo(units1) && UnitsUtil.isRatioMeasurement(units1) ) { final UnitsConverter uc= UnitsConverter.getConverter( units2, units1); result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 - uc.convert(d2); } } ); if ( units1!=Units.dimensionless ) result.putProperty( QDataSet.UNITS, units1 ); } else if ( UnitsUtil.isIntervalMeasurement(units1) && UnitsUtil.isIntervalMeasurement(units2) ) { final UnitsConverter uc= UnitsConverter.getConverter( units2, units1 ); result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 - uc.convert(d2); } } ); result.putProperty( QDataSet.UNITS, units1.getOffsetUnits() ); } else if ( UnitsUtil.isIntervalMeasurement(units1) && !UnitsUtil.isIntervalMeasurement(units2)) { if ( units2==Units.dimensionless && !UnitsUtil.isTimeLocation(units1) ) { units2= units1.getOffsetUnits(); } final UnitsConverter uc= UnitsConverter.getConverter( units2, units1.getOffsetUnits() ); result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 - uc.convert(d2); } } ); result.putProperty( QDataSet.UNITS, units1 ); } else if ( UnitsUtil.isIntervalMeasurement(units2) && !UnitsUtil.isIntervalMeasurement(units1)) { throw new IllegalArgumentException("cannot subtract interval measurement from ratio measurement: " + units1 + " - "+ units2 ); } else if ( UnitsUtil.isRatioMeasurement(units1) && units2.isConvertibleTo(Units.dimensionless) ) { result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 - d2; } } ); result.putProperty( QDataSet.UNITS, units1 ); } else if ( UnitsUtil.isRatioMeasurement(units2) && units1.isConvertibleTo(Units.dimensionless) ) { result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 - d2; } } ); result.putProperty( QDataSet.UNITS, units2 ); } else { throw new IllegalArgumentException("cannot subtract: " + units1 + " - "+ units2 ); } result.putProperty(QDataSet.NAME, null ); result.putProperty(QDataSet.MONOTONIC, null ); result.putProperty(QDataSet.LABEL, maybeLabelInfixOp( ds1, ds2, "-" ) ); return result; } /** * subtract one dataset from another, using dataset to convert the arguments. * @param ds1 QDataSet, array, string, scalar argument * @param ds2 QDataSet, array, string, scalar argument with compatible geometry * @return the element-wise difference of the two datasets. */ public static QDataSet subtract( Object ds1, Object ds2 ) { return subtract( dataset(ds1), dataset(ds2) ); } /** * maybe insert a label indicating the one-argument operation. The operation * is formatted like opStr(ds1). If a label cannot be created (for example, * no LABEL or NAME property), then null is returned. * @param ds1 * @param opStr * @return the label or null. */ private static String maybeLabelUnaryOp( QDataSet ds1, String opStr ) { String label1= (String) ds1.property(QDataSet.LABEL); if ( label1==null ) label1= (String)ds1.property(QDataSet.NAME); if ( label1==null ) return null; String l1Str= label1; return opStr + "("+l1Str + ")"; } /** * maybe insert a label indicating the two-argument operation. The operation * is formatted like opStr(ds1,ds2) * @param ds1 * @param ds2 * @param opStr */ private static String maybeLabelBinaryOp( QDataSet ds1, QDataSet ds2, String opStr ) { String label1= (String) ds1.property(QDataSet.LABEL); if ( label1==null ) label1= (String)ds1.property(QDataSet.NAME); String label2= (String) ds2.property(QDataSet.LABEL); if ( label2==null ) label2= (String)ds2.property(QDataSet.NAME); if ( label1==null || label2==null ) return null; String l1Str= label1; String l2Str= label2; return opStr + "(" + l1Str + "," + l2Str + ")"; } /** * maybe insert a label indicating the operation. * @param ds1 * @param ds2 * @param opStr */ private static String maybeLabelInfixOp( QDataSet ds1, QDataSet ds2, String opStr ) { String label1= (String) ds1.property(QDataSet.LABEL); if ( label1==null ) label1= (String)ds1.property(QDataSet.NAME); String label2= (String) ds2.property(QDataSet.LABEL); if ( label2==null ) label2= (String)ds2.property(QDataSet.NAME); if ( label1==null || label2==null ) return null; if ( label1.equals(label2) ) { // this happens for example when LABEL=B_GSM and we do B_GSM[:,0] / B_GSM[:,1] See autoplot-test025: test025_000 return null; } Pattern idpat= Pattern.compile("[a-zA-Z_][a-zA-Z_0-9]*"); String l1Str= label1; if ( ! idpat.matcher(l1Str).matches() ) l1Str= "("+l1Str+")"; String l2Str= label2; if ( ! idpat.matcher(l2Str).matches() ) l2Str= "("+l2Str+")"; if ( l1Str!=null && l2Str!=null ) { return l1Str + opStr + l2Str; } else { return null; } } /** * only copy the property if it is defined in src. If it is not in src, then * we will insert null into dest if it is found there. * @param name the property name * @param src the source dataset * @param dest the destination dataset */ private static void maybeCopyProperty( String name, QDataSet src, MutablePropertyDataSet dest ) { Object o= src.property(name); if ( o!=null ) { dest.putProperty(name, o); } else { if ( dest.property(name)!=null ) { // clear the non-null property. dest.putProperty(name,null); } } } /** * return a dataset with each element negated. * If units are specified, Units must be ratiometric units, like "5 km" * or dimensionless, and not ordinal or time location units. * @see #copysign * @see #signum * @param ds1 * @return */ public static QDataSet negate(QDataSet ds1) { Units u= SemanticOps.getUnits(ds1); if ( !UnitsUtil.isRatioMeasurement(u) ) { throw new IllegalArgumentException("Units are not ratiometric units"); } MutablePropertyDataSet mpds= applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double d1) { return -d1; } }); mpds.putProperty(QDataSet.UNITS,u); return mpds; } public static QDataSet negate( Object ds1 ) { return negate( dataset(ds1) ); } /** * return the magnitudes of vectors in a rank 1 or greater dataset (typically * rank 2). The last index should be the cartesian dimension. For example, **
{@code
     * ds= getDataSet('http://autoplot.org/data/autoplot.cdf?BGSM') # BGSM[Epoch=24,cart=3]
     * m= magnitude(ds)
     *}
* For rank 0, this just returns the absolute value, but with the same units. * * @param ds dataset of Rank N. * @return dataset of Rank N-1. * @see #abs(org.das2.qds.QDataSet) */ public static QDataSet magnitude(QDataSet ds) { if ( ds==null ) throw new IllegalArgumentException("input ds is null"); int r = ds.rank(); if ( r==0 ) { return DataSetUtil.asDataSet( Math.abs(ds.value()), (Units) ds.property(QDataSet.UNITS) ); //TODO: invalid. } QDataSet depn = (QDataSet) ds.property("DEPEND_" + (r - 1)); boolean isCart; if (depn != null) { if (depn.property(QDataSet.COORDINATE_FRAME) != null) { isCart = true; } else if ("cartesian".equals(depn.property(QDataSet.NAME))) { isCart = true; } else { isCart = depn.length()<4; // loosen up restrictions } } else { int[] qubedims= DataSetUtil.qubeDims(ds); isCart = qubedims[r-1]<4; // loosen up restrictions } if (isCart) { Units u= (Units) ds.property(QDataSet.UNITS); ds = pow(ds, 2); ds = total(ds, r - 1); ds = sqrt(ds); if ( u!=null ) ((MutablePropertyDataSet)ds).putProperty(QDataSet.UNITS,u); return ds; } else { throw new IllegalArgumentException("last dim must have COORDINATE_FRAME property. See also abs() method"); } } public static QDataSet magnitude( Object ds1 ) { return magnitude( dataset(ds1) ); } /** * return the total of all the elements in the dataset. If there are * invalid measurements, then fill is returned. * Does not support BINS or BUNDLE dimensions. * * @param ds * @return the unweighted total of the dataset, or -1e31 if fill was encountered. * @see #total(org.das2.qds.QDataSet, int) total, which should be used instead. */ public static double total(QDataSet ds) { return total(ds,new NullProgressMonitor()); } /** * return the total of all the elements in the dataset. If there are * invalid measurements, then fill is returned. * Does not support BINS or BUNDLE dimensions. * * @param ds * @param mon progress monitor * @return the unweighted total of the dataset, or -1e31 if fill was encountered. * @see #total(org.das2.qds.QDataSet, int, org.das2.util.monitor.ProgressMonitor) total, which should be used instead. */ public static double total(QDataSet ds,ProgressMonitor mon) { double s = 0; QubeDataSetIterator it1 = new QubeDataSetIterator(ds); QDataSet wds= DataSetUtil.weightsDataSet(ds); double fill = ((Number) wds.property(WeightsDataSet.PROP_SUGGEST_FILL)).doubleValue(); it1.setMonitor(mon); while (it1.hasNext()) { it1.next(); double w= it1.getValue(wds); if ( w==0 ) { return fill; } s += it1.getValue(ds); } return s; } /** * return the total of all the elements in the object which can be converted * to a dataset. * * @param ds1 the object which can be converted to a dataset. * @return * @see #total(org.das2.qds.QDataSet) */ public static double total( Object ds1 ) { return total( dataset(ds1) ); } /** * interface for an average operation that combines numbers. For example, mean or geometric mean, but * also "maxOf" and total are AverageOps that can be implemented. */ private interface AverageOp { /** * average in measurement d1 with weight w1 into accum. * @param d1 the data point, possibly NaN. Note NaN*0=NaN. * @param w1 the weight of the data, where 0 indicates the measurement can be ignored, and a positive * number indicates the weight relative others in the average. * @param accum storage for the average and the weight. accum[0] is the average, accum[1] is the weight. */ void accum(double d1, double w1, double[] accum); /** * store the initial values. * @param store */ void initStore(double[] store); /** * normalize the accumulator. accum[0] should contain the value, accum[1] should contain the weight. * @param accum */ void normalize(double[] accum); } /** * reduce the dataset's rank by combining all the elements along a dimension. * AverageOp is used to combine measurements. * Only QUBEs are supported presently, or dim can be the last dimension of a non-qube. * It is assumed that when there is just one element, that one element can be returned. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @param AverageOp operation to combine measurements, such as max or mean. * @param mon null or a progress monitor * @return rank N-1 qube dataset. */ private static QDataSet averageGen(QDataSet ds, int dim, AverageOp op, ProgressMonitor mon ) throws CancelledOperationException { if ( ds==null ) throw new NullPointerException("ds reference is null"); int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null && dim<(ds.rank()-1) ) throw new IllegalArgumentException("dataset is not a qube, operations can only be done on the last index"); if ( mon==null ) mon= new NullProgressMonitor(); if ( dim>=ds.rank() ) throw new IllegalArgumentException( String.format( "dimension index (%d) exceeds rank (%d)", dim, ds.rank() ) ); // optimize for Ivar's case, where average is done over 1 element. // This is just a slice! if ( qube!=null && qube[dim]==1 ) { switch (dim) { case 0: return ds.slice(0); case 1: return Ops.slice1( ds, 0 ); case 2: return Ops.slice2( ds, 0 ); case 3: return Ops.slice3( ds, 0 ); default: break; } } int[] newQube; if ( qube!=null ) { newQube= DataSetOps.removeElement(qube, dim); } else { switch ( ds.rank() ) { // rank 0 and rank 1 are automatically qubes. case 2: newQube= new int[] { ds.length() }; break; case 3: newQube= new int[] { ds.length(), ds.length(0) }; break; case 4: newQube= new int[] { ds.length(), ds.length(0), ds.length(0,0) }; break; default: throw new IllegalArgumentException("implementation error"); } } QDataSet wds = DataSetUtil.weightsDataSet(ds); DDataSet result = DDataSet.create(newQube); DDataSet wresult= DDataSet.create(newQube); QubeDataSetIterator it1 = new QubeDataSetIterator(result); it1.setMonitor(mon.getSubtaskMonitor("reduce")); double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue(); double[] store = new double[2]; while (it1.hasNext()) { if ( mon.isCancelled() ) { throw new CancelledOperationException("User pressed cancel"); } it1.next(); op.initStore(store); QubeDataSetIterator it0 = new QubeDataSetIterator(ds); for (int i = 0; i < ds.rank(); i++) { int ndim = i < dim ? i : i - 1; if (i != dim) { it0.setIndexIteratorFactory(i, new QubeDataSetIterator.SingletonIteratorFactory(it1.index(ndim))); } } while (it0.hasNext()) { it0.next(); op.accum(it0.getValue(ds), it0.getValue(wds), store); } op.normalize(store); it1.putValue(result, store[1] > 0 ? store[0] : fill); it1.putValue(wresult, store[1] ); } Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, dim ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.FILL_VALUE,fill); result.putProperty(QDataSet.WEIGHTS,wresult); for ( int i=dim+1; i2 ) { dep= reduceMean( dep, dim, mon.getSubtaskMonitor("average DEPEND_"+dim) ); result.putProperty( "DEPEND_"+(i-1), dep ); } } QDataSet dep0= (QDataSet) ds.property(QDataSet.DEPEND_0); if ( dim==0 && dep0!=null && dep0.length()>0 ) { QDataSet extent= Ops.extent(dep0); DataSetUtil.addContext( result, extent ); } return result; } /** * reduce the dataset's rank by totaling all the elements along a dimension. * Only QUBEs are supported presently. * * @param ds rank N qube dataset. N=1,2,3,4 * @param dim zero-based index number. * @return rank N-1 dataset. * @see #total(org.das2.qds.QDataSet) total(ds) total, which is an earlier deprecated routine. * @see #reduceSum(org.das2.qds.QDataSet, int) reduceSum, which skips invalid data. */ public static QDataSet total(QDataSet ds, int dim) { try { return total(ds,dim,new NullProgressMonitor()); } catch ( CancelledOperationException ex ) { throw new IllegalArgumentException("null monitor cannot be cancelled"); } } /** * reduce the dataset's rank by totaling all the elements along a dimension. * Only QUBEs are supported presently. * * @param ds rank N qube dataset. N=1,2,3,4 * @param dim zero-based index number. * @param mon progress monitor. * @return the rank N-1 qube dataset. * @throws CancelledOperationException */ public static QDataSet total(QDataSet ds, int dim, ProgressMonitor mon) throws CancelledOperationException { int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null ) throw new IllegalArgumentException("argument does not appear to be qube"); int[] newQube = DataSetOps.removeElement(qube, dim); QDataSet wds = DataSetUtil.weightsDataSet(ds); DDataSet result= DDataSet.create(newQube); DDataSet weights= DDataSet.create(newQube); double fill = ((Number) wds.property(WeightsDataSet.PROP_SUGGEST_FILL)).doubleValue(); if ( ds.rank()==2 && dim==1 ) { int jlen= ds.length(0); mon.setTaskSize(result.length()); mon.started(); for ( int i=0; i 0 ? 1 : 0.; s += w1 * it0.getValue(ds); w += w1; } it1.putValue(result, w > 0 ? s : fill); it1.putValue(weights, w ); } } Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, dim ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.WEIGHTS,weights); result.putProperty(QDataSet.FILL_VALUE,fill); return result; } /** * reduce the dataset's rank by reporting the max of all the elements along a dimension. * Only QUBEs are supported presently. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @return rank N-1 dataset. */ public static QDataSet reduceMax(QDataSet ds, int dim) { return reduceMax( ds, dim, null ); } /** * reduce the dataset's rank by reporting the max of all the elements along a dimension. * Only QUBEs are supported presently. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @param mon progress monitor * @return rank N-1 dataset. */ public static QDataSet reduceMax(QDataSet ds, int dim, ProgressMonitor mon ) { try { return averageGen(ds, dim, new AverageOp() { @Override public void accum(double d1, double w1, double[] accum) { if (w1 > 0.0) { accum[0] = Math.max(d1, accum[0]); accum[1] += w1; } } @Override public void initStore(double[] accum) { accum[0] = Double.NEGATIVE_INFINITY; accum[1] = 0.; } @Override public void normalize(double[] accum) { // nothing to do } }, mon ); } catch ( CancelledOperationException ex ) { throw new RuntimeException(ex); } } /** * reduce the dataset's rank by reporting the sum of all the valid elements along a dimension. The property * "WEIGHTS" will contain the sum of the weights. * Only QUBEs are supported presently. This is like the function "total," but skips invalid values. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @return rank N-1 dataset. * @see #total(org.das2.qds.QDataSet, int) */ public static QDataSet reduceSum(QDataSet ds, int dim) { try { return averageGen(ds, dim, new AverageOp() { @Override public void accum(double d1, double w1, double[] accum) { if (w1 > 0.0) { accum[0] = accum[0] + d1; accum[1] += w1; } } @Override public void initStore(double[] accum) { accum[0] = 0.; accum[1] = 0.; } @Override public void normalize(double[] accum) { // nothing to do } }, new NullProgressMonitor() ); } catch ( CancelledOperationException ex ) { throw new RuntimeException(ex); } } public static QDataSet reduceMin(QDataSet ds, int dim) { return reduceMin( ds, dim, null ); } /** * reduce the dataset's rank by reporting the min of all the elements along a dimension. * Only QUBEs are supported presently. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @param mon progress monitor * @return rank N-1 dataset. */ public static QDataSet reduceMin(QDataSet ds, int dim, ProgressMonitor mon ) { try { return averageGen(ds, dim, new AverageOp() { @Override public void accum(double d1, double w1, double[] accum) { if (w1 > 0.0) { accum[0] = Math.min(d1, accum[0]); accum[1] += w1; } } @Override public void initStore(double[] accum) { accum[0] = Double.POSITIVE_INFINITY; accum[1] = 0.; } @Override public void normalize(double[] accum) { // nothing to do } }, mon ); } catch ( CancelledOperationException ex ) { throw new RuntimeException(ex); } } /** * reduce the dataset's rank by reporting the mean of all the elements along a dimension. * Only QUBEs are supported presently. Note this does not contain code that would remove * large offsets from zero when making the average, so the number of points is limited. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @return rank N-1 qube dataset. */ public static QDataSet reduceMean(QDataSet ds, int dim) { try { return reduceMean( ds, dim, new NullProgressMonitor() ); } catch (CancelledOperationException ex) { throw new RuntimeException(ex); } } /** * reduce the dataset's rank by reporting the mean of all the elements along a dimension. * Only QUBEs are supported presently. Note this does not contain code that would remove * large offsets from zero when making the average, so the number of points is limited. * * @param ds rank N qube dataset. * @param dim zero-based index number. * @param mon progress monitor. * @return rank N-1 qube dataset * @throws org.das2.util.monitor.CancelledOperationException */ public static QDataSet reduceMean(QDataSet ds, int dim, ProgressMonitor mon ) throws CancelledOperationException { return averageGen(ds, dim, new AverageOp() { @Override public void accum(double d1, double w1, double[] accum) { if ( w1 > 0.0 ) { // because 0 * NaN is NaN... accum[0] += w1 * d1; accum[1] += w1; } } @Override public void initStore(double[] accum) { accum[0] = 0.; accum[1] = 0.; } @Override public void normalize(double[] accum) { if (accum[1] > 0.) { accum[0] /= accum[1]; } } }, mon ); } /** * reduce the dataset's rank by reporting the median of all the elements along a dimension. * Only QUBEs are supported presently. Note the weights reported are the totals of the data going in to each * median, typically the number of measurements compared (when all weights are 0 or 1). * * @param ds rank N qube dataset. * @param dim zero-based index number. * @param mon progress monitor. * @return rank N-1 qube dataset * @throws org.das2.util.monitor.CancelledOperationException */ public static QDataSet reduceMedian(QDataSet ds, int dim, ProgressMonitor mon ) throws CancelledOperationException { return averageGen(ds, dim, new AverageOp() { DataSetBuilder b; @Override public void accum(double d1, double w1, double[] accum) { if ( w1 > 0.0 ) { // because 0 * NaN is NaN... b.nextRecord(d1); accum[1] += w1; } } @Override public void initStore(double[] accum) { b= new DataSetBuilder(1,100); accum[1]= 0.0; } @Override public void normalize(double[] accum) { QDataSet all= b.getDataSet(); if ( all.length()==0 ) { accum[0]= Double.NaN; accum[1]= 0.0; } else { accum[0]= median(all).value(); } } }, mon ); } /** * reduce each bin to its center. If the spacing is * log, then geometric centers are used. * @param dep1 rank 2 [N,2] bins dataset, where bins are min,max boundaries. * @return rank 1 N element dataset */ public static QDataSet reduceBins(QDataSet dep1) { if ( dep1.property(QDataSet.BINS_1).equals(QDataSet.VALUE_BINS_MIN_MAX) ) { DDataSet result= DDataSet.createRank1(dep1.length()); int n= result.length(); if ( QDataSet.VALUE_SCALE_TYPE_LOG.equals(dep1.property(QDataSet.SCALE_TYPE)) ) { for ( int i=0; i n.value(1) ) { n= n.slice(0); } else { n= n.slice(1); } MutablePropertyDataSet result= Ops.maybeCopy( Ops.divide( ds, n ) ); Map props= DataSetUtil.getProperties(ds); props.put(QDataSet.UNITS, Units.dimensionless ); props.put(QDataSet.TITLE, "" + props.get(QDataSet.TITLE)+" (normalized)"); props.put(QDataSet.LABEL, "" + props.get(QDataSet.LABEL)+" (normalized)"); DataSetUtil.putProperties( props, result ); return result; } /** * reduce the size of the data by keeping every 10th measurement. * @param ds a qube dataset. * @return a decimated qube dataset. * @see #decimate(org.das2.qds.QDataSet, int) */ public static QDataSet decimate( QDataSet ds ) { return decimate( ds, 10 ); } /** * reduce the size of the data by keeping every nth measurement (subsample). * @param ds rank 1 or more dataset. * @param m the decimation factor, e.g. 2 is every other measurement. * @return * */ public static QDataSet decimate( QDataSet ds, int m ) { if ( Schemes.isIrregularJoin(ds) ) { throw new IllegalArgumentException("not supported"); } int newlen= ds.length()/m; int imax= newlen*m - m; return DataSetOps.applyIndex( ds, Ops.linspace( 0, imax, newlen) ); } /** * reduce the size of the data by keeping every nth measurement (subsample). * @param ds rank 1 or more dataset. * @param m the decimation factor for the zeroth index, e.g. 2 is every other measurement. * @param n the decimation factor for the first index, e.g. 2 is every other measurement. * @return new dataset which is ds.length()/m by ds.length(0)/n. * */ public static QDataSet decimate( QDataSet ds, int m, int n ) { if ( Schemes.isIrregularJoin(ds) ) { throw new IllegalArgumentException("not supported"); } int newlen0= ds.length()/m; int max0= newlen0*m; int newlen1= ds.length(0)/n; int max1= newlen1*n; QubeDataSetIterator iter= new QubeDataSetIterator(ds); iter.setIndexIteratorFactory( 0, new QubeDataSetIterator.StartStopStepIteratorFactory( 0, max0, m ) ); iter.setIndexIteratorFactory( 1, new QubeDataSetIterator.StartStopStepIteratorFactory( 0, max1, n ) ); DDataSet result= iter.createEmptyDs(); QubeDataSetIterator iterout= new QubeDataSetIterator(result); while ( iter.hasNext() ) { iter.next(); iterout.next(); iterout.putValue( result, iter.getValue(ds) ); } result.putProperty(QDataSet.RENDER_TYPE,ds.property(QDataSet.RENDER_TYPE)); return result; } /** * this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. * collapse0( ds[30,20] ) → ds[20] * @param fillDs * @param st the start index * @param en the non-inclusive end index * @return the averaged dataset */ public static QDataSet collapse0( QDataSet fillDs, int st, int en ) { fillDs= fillDs.trim( st,en ); fillDs= Ops.reduceMean(fillDs,0); return fillDs; } /** * this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. * collapse0( ds[30,20] ) → ds[20] * @param fillDs * @return the averaged dataset */ public static QDataSet collapse0( QDataSet fillDs ) { if ( fillDs.rank()==4 ) { return collapse0R4(fillDs,new NullProgressMonitor()); } else { fillDs= Ops.reduceMean(fillDs,0); return fillDs; } } /** * Collapse the rank 4 dataset on the zeroth index. * @see org.das2.qds.OperationsProcessor#sprocess(java.lang.String, org.das2.qds.QDataSet, org.das2.util.monitor.ProgressMonitor) * @param ds rank 4 dataset * @param mon * @return rank 3 dataset */ public static QDataSet collapse0R4( QDataSet ds, ProgressMonitor mon ) { if ( ds.rank()==4 ) { int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null ) throw new IllegalArgumentException("dataset is not a qube"); int[] newQube = DataSetOps.removeElement(qube, 0); //MutablePropertyDataSet mpds= DataSetOps.makePropertiesMutable(ds); //mpds.putProperty(QDataSet.BUNDLE_1,null); QDataSet mpds= ds; QDataSet wds = DataSetUtil.weightsDataSet(mpds); DDataSet result = DDataSet.create(newQube); DDataSet wresult= DDataSet.create(newQube); mon.setTaskSize(qube[1]); mon.started(); for ( int i1= 0; i10 ) { result.addValue(i1, i2, i3, w*ds.value(i0,i1,i2,i3)); wresult.addValue(i1, i2, i3, w ); } } } } } double fill= Double.NaN; for ( int i0= 0; i00 ) { double n= result.value(i0, i1, i2 ); result.putValue(i0, i1, i2, n/w); } else { result.putValue(i0, i1, i2, fill ); } } } } mon.finished(); Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, 0 ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.WEIGHTS,wresult); return result; } else { throw new IllegalArgumentException("only rank 4"); } } /** * Collapse the rank 4 dataset on the first index. * @see org.das2.qds.OperationsProcessor#sprocess(java.lang.String, org.das2.qds.QDataSet, org.das2.util.monitor.ProgressMonitor) * @param ds rank 4 dataset * @param mon * @return rank 3 dataset */ public static QDataSet collapse1R4( QDataSet ds, ProgressMonitor mon ) { if ( ds.rank()==4 ) { int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null ) throw new IllegalArgumentException("dataset is not a qube"); int[] newQube = DataSetOps.removeElement(qube, 1); //MutablePropertyDataSet mpds= DataSetOps.makePropertiesMutable(ds); //mpds.putProperty(QDataSet.BUNDLE_1,null); QDataSet mpds= ds; QDataSet wds = DataSetUtil.weightsDataSet(mpds); DDataSet result = DDataSet.create(newQube); DDataSet wresult= DDataSet.create(newQube); mon.setTaskSize(qube[0]); mon.started(); for ( int i0= 0; i00 ) { result.addValue(i0, i2, i3, w*ds.value(i0,i1,i2,i3)); wresult.addValue(i0, i2, i3, w ); } } } } } double fill= Double.NaN; for ( int i0= 0; i00 ) { double n= result.value(i0, i2, i3 ); result.putValue(i0, i2, i3, n/w); } else { result.putValue(i0, i2, i3, fill ); } } } } mon.finished(); Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, 1 ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.WEIGHTS,wresult); return result; } else { throw new IllegalArgumentException("only rank 4"); } } /** * this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension * collapse1( ds[30,20] ) → ds[30] * @param ds * @return the averaged dataset */ public static QDataSet collapse1( QDataSet ds ) { if ( ds.rank()==4 ) { return collapse1R4(ds,new NullProgressMonitor()); } else { ds= Ops.reduceMean(ds,1); return ds; } } /** * this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension * collapse2( ds[30,20,10,5] ) → ds[30,20,5] * @param fillDs * @return the averaged dataset */ public static QDataSet collapse2( QDataSet fillDs ) { if ( fillDs.rank()==4 ) { return collapse2R4(fillDs,new NullProgressMonitor()); } else { fillDs= Ops.reduceMean(fillDs,2); return fillDs; } } /** * Collapse the rank 4 dataset on the second index. * @see org.das2.qds.OperationsProcessor#sprocess(java.lang.String, org.das2.qds.QDataSet, org.das2.util.monitor.ProgressMonitor) * @param ds rank 4 dataset * @param mon * @return rank 3 dataset */ public static QDataSet collapse2R4( QDataSet ds, ProgressMonitor mon ) { if ( ds.rank()==4 ) { int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null ) throw new IllegalArgumentException("dataset is not a qube"); int[] newQube = DataSetOps.removeElement(qube, 2); //MutablePropertyDataSet mpds= DataSetOps.makePropertiesMutable(ds); //mpds.putProperty(QDataSet.BUNDLE_1,null); QDataSet mpds= ds; QDataSet wds = DataSetUtil.weightsDataSet(mpds); DDataSet result = DDataSet.create(newQube); DDataSet wresult= DDataSet.create(newQube); mon.setTaskSize(qube[0]); mon.started(); for ( int i0= 0; i00 ) { result.addValue(i0, i1, i3, w*ds.value(i0,i1,i2,i3)); wresult.addValue(i0, i1, i3, w ); } } } } } double fill= Double.NaN; for ( int i0= 0; i00 ) { double n= result.value(i0, i1, i2 ); result.putValue(i0, i1, i2, n/w); } else { result.putValue(i0, i1, i2, fill ); } } } } mon.finished(); Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, 2 ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.WEIGHTS,wresult); return result; } else { throw new IllegalArgumentException("only rank 4"); } } /** * this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension * collapse3( ds[30,20,10,5] ) → ds[30,20,10] * @param fillDs * @return the averaged dataset */ public static QDataSet collapse3( QDataSet fillDs ) { if ( fillDs.rank()==4 ) { return collapse3R4( fillDs, new NullProgressMonitor() ); } else { fillDs= Ops.reduceMean(fillDs,3); return fillDs; } } /** * Collapse the rank 4 dataset on the third index. * @see org.das2.qds.OperationsProcessor#sprocess(java.lang.String, org.das2.qds.QDataSet, org.das2.util.monitor.ProgressMonitor) * @param ds rank 4 dataset * @param mon * @return rank 3 dataset */ public static QDataSet collapse3R4( QDataSet ds, ProgressMonitor mon ) { if ( ds.rank()==4 ) { int[] qube = DataSetUtil.qubeDims(ds); if ( qube==null ) throw new IllegalArgumentException("dataset is not a qube"); int[] newQube = DataSetOps.removeElement(qube, 3); //MutablePropertyDataSet mpds= DataSetOps.makePropertiesMutable(ds); //mpds.putProperty(QDataSet.BUNDLE_1,null); QDataSet mpds= ds; QDataSet wds = DataSetUtil.weightsDataSet(mpds); DDataSet result = DDataSet.create(newQube); DDataSet wresult= DDataSet.create(newQube); mon.setTaskSize(qube[1]); mon.started(); for ( int i0= 0; i00 ) { result.addValue(i0, i1, i2, w*ds.value(i0,i1,i2,i3)); wresult.addValue(i0, i1, i2, w ); } } } } } double fill= Double.NaN; for ( int i0= 0; i00 ) { double n= result.value(i0, i1, i2 ); result.putValue(i0, i1, i2, n/w); } else { result.putValue(i0, i1, i2, fill ); } } } } mon.finished(); Map props= DataSetUtil.getProperties(ds); props= DataSetOps.sliceProperties( props, 2 ); DataSetUtil.putProperties( props, result ); result.putProperty(QDataSet.WEIGHTS,wresult); return result; } else { throw new IllegalArgumentException("only rank 4"); } } /** * trim the dataset to the indeces on the zeroth dimension. Note * the trim function can also be called directly. * @param ds the dataset to be trimmed. * @param st the start index * @param en the non-inclusive end index * @return */ public static QDataSet trim( QDataSet ds, int st, int en ) { return ds.trim( st, en ); } /** * return the trim of the dataset ds where its DEPEND_0 (typically xtags) are * within the range dr. * @param ds a rank 1 or greater dataset * @param dr a range in the same units as ds * @return the subset of the data. * @see #trim(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet trim( QDataSet ds, DatumRange dr ) { return trim( ds, dataset( dr.min() ), dataset( dr.max() ) ); } /** * return the trim of the dataset ds where its DEPEND_0 (typically xtags) are * within the range dr. * @param ds a rank 1 or greater dataset * @param odr an object which can be interpretted as a range. * @return the subset of the data. * @see #trim(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet trim( QDataSet ds, Object odr ) { DatumRange dr= datumRange(odr); return trim( ds, dataset( dr.min() ), dataset( dr.max() ) ); } /** * return the trim of the dataset ds where its DEPEND_0 (typically xtags) are * within the range dr. For example, * if ds was 7-days from 2014-01-01 through 2014-01-07, and st=2014-01-02 * and en=2014-01-03 then just the records collected on this one day would * be returned. * @param ds the dataset to be trimmed, with a rank 1 monotonic DEPEND_0. * @param st rank 0 min value * @param en rank 0 max value * @return the subset of the data. * @see #slice0(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet trim( QDataSet ds, QDataSet st, QDataSet en ) { if ( st.rank()!=0 || en.rank()!=0 ) { if ( st.rank()==1 && st.length()==2 && en.rank()==1 && en.length()==2 ) { return SemanticOps.trim( ds, datumRange(st), datumRange(en) ); } throw new IllegalArgumentException("start and end parameters must be both rank 0 or both rank 1"); } if ( ds==null ) { throw new NullPointerException("ds is null"); } if ( ds.length()==0 ) { return ds; } QDataSet dep0= SemanticOps.xtagsDataSet(ds); QDataSet dep0en= dep0; if ( dep0.rank()!=1 ) { if ( dep0.rank()==2 ) { // join of tags WritableDataSet dep0enc= Ops.copy( Ops.slice1( dep0,0 ) ); dep0enc.putProperty( QDataSet.UNITS, SemanticOps.getUnits(dep0) ); // TODO: this should happen automatically WritableDataSet dep0stc= Ops.copy( dep0enc ); dep0stc.putProperty( QDataSet.UNITS, SemanticOps.getUnits(dep0) ); for ( int i=0; id2) { double t= d1; d1= d2; d2=t; } dep0enc.putValue(i,d1); dep0stc.putValue(i,d2); } dep0= dep0stc; dep0en= dep0enc; Ops.lt( dep0, dep0en ); } } if ( dep0.length()<1 ) { return ds; } else if ( dep0.length()<2 ) { Datum startDatum= datum(st); Datum stopDatum= datum(en); Datum t= datum(dep0.slice(0)); if ( startDatum.le(t) && t.le(stopDatum) ) { return ds; } else { return ds.trim(0, 0); } } QDataSet findex= Ops.findex( dep0, st ); double f1= Math.ceil( findex.value() ); findex= Ops.findex( dep0en, en ); double f2= Math.ceil( findex.value() ); // f2 is exclusive. int n= dep0.length(); f1= 0>f1 ? 0 : f1; f1= nf2 ? 0 : f2; f2= nf2 ) { if ( Ops.ge(st,en).value()>0 ) { throw new IllegalArgumentException("st must be less than (or earlier than) en"); } else { return ds.trim((int)f1,(int)f1); } } return ds.trim((int)f1,(int)f2); } /** * trim the qube dataset on any of its indices, for example ds[:,:,5:10] * would use this operation. * @param dim the index (0, 1, 2, 3, or 4) on which to trim. * @param ds the dataset, which must be a qube. * @param st the first index, inclusive * @param en the last index, exclusive * @return the trimmed dataset with same number of dimensions and fewer indeces in one dimension. */ public static QDataSet trim( int dim, QDataSet ds, int st, int en ) { if ( dim==0 ) { return trim( ds, st, en ); } else { TrimStrideWrapper tsw= new TrimStrideWrapper(ds); tsw.setTrim( dim, st, en, 1 ); return tsw; } } /** * trim the qube dataset on any of its indices, for example ds[:,:,5:10] * would use this operation. * @param dim the index (0, 1, 2, 3, or 4) on which to trim. * @param ds the dataset, which must be a qube. * @param st rank 0 min value * @param en rank 0 max value * @return the trimmed dataset with same number of dimensions and fewer indeces in one dimension. */ public static QDataSet trim( int dim, QDataSet ds, QDataSet st, QDataSet en ) { if ( dim==0 ) { return trim( ds, st, en ); } else { QDataSet dep= (QDataSet) ds.property( "DEPEND_"+dim ); QDataSet findex= Ops.findex( dep, st ); double f1= Math.ceil( findex.value() ); findex= Ops.findex( dep, en ); double f2= Math.ceil( findex.value() ); // f2 is exclusive. int n= dep.length(); f1= 0>f1 ? 0 : f1; f1= nf2 ? 0 : f2; f2= nf1 ? 0 : f1; f1= nf2 ? 0 : f2; f2= nf2 ) throw new IllegalArgumentException("st must be less than (or earlier than) en"); return Ops.trim1( ds, (int)f1,(int)f2 ); } /** * trim on the first (not zeroth) dimension. This is to help with * unbundling the timeranges from an events dataset. * @param ds the dataset, rank 2 or greater * @param st the first index * @param en the last index, exclusive. * @return the trimmed dataset. */ public static QDataSet trim1( QDataSet ds, int st, int en ) { if ( ds.rank()==2 ) { QDataSet bundle1= (QDataSet) ds.property(QDataSet.BUNDLE_1); if ( bundle1!=null ) bundle1= bundle1.trim(st,en); ds= DataSetOps.leafTrim( ds, st, en ); if ( bundle1!=null ) ds= putProperty( ds, QDataSet.BUNDLE_1, bundle1 ); return ds; } else { TrimStrideWrapper tsw= new TrimStrideWrapper(ds); tsw.setTrim( 1, st, en, 1 ); return tsw; } } /** * element-wise sqrt. See Ops.pow to square a number. * @param ds the dataset * @return the square root of the dataset, which will contain NaN where the data is negative. * @see #pow(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet sqrt(QDataSet ds) { //MutablePropertyDataSet result= (MutablePropertyDataSet) pow(ds, 0.5); MutablePropertyDataSet result= applyUnaryOp( ds, new UnaryOp() { @Override public double op(double d1) { return Math.sqrt(d1); } } ); return result; } public static double sqrt( double ds1 ) { return Math.sqrt( ds1 ); } public static QDataSet sqrt( Object ds1 ) { return sqrt( dataset(ds1) ); } /** * Perform Butterworth filter for high pass or low pass. * @param in the rank 1 waveform * @param order the order of the filter (2,3,4) * @param f the frequency, e.g. Units.hertz.createDatum(10) * @param lowp true for low pass, false for high pass. * @return the dataset in the same form. */ public static QDataSet butterworth( QDataSet in, int order, Datum f, boolean lowp ) { Butterworth b= new Butterworth( in, order, f, lowp ); return b.filter(); } /** * Perform Butterworth filter for notch or band pass or band reject. * @param in the rank 1 waveform * @param order the order of the filter (2,3,4) * @param flow the lower band limit, e.g. Units.hertz.createDatum(10) * @param fhigh the higher band limit, e.g. Units.hertz.createDatum(20) * @param pass true for band pass, false for band reject. * @return the dataset in the same form. */ public static QDataSet butterworth( QDataSet in, int order, Datum flow, Datum fhigh, boolean pass ) { Butterworth b= new Butterworth( in, order, flow, fhigh, pass ); return b.filter(); } /** * Solves each of a set of cubic equations of the form: * a*x^3 + b*x^2 + c*x + d = 0. * Takes a rank 2 dataset with each equation across the first dimension and * coefficients of each equation across the second. * @param coefficients Set of all coefficients. * @return Roots of each equation. Double.NaN is returned for complex roots. * @author Henry Livingston Wroblewski */ public static QDataSet cubicRoot( QDataSet coefficients ) { //check for correct dimension of input if( coefficients.rank() != 2 ) { throw new IllegalArgumentException( "Must pass rank 2 QDataSet to cubicRoot"); } // check for correct size input if( coefficients.length(0) != 4 || !DataSetUtil.isQube(coefficients) ) { throw new IllegalArgumentException( "Each row must be length 4 for cubicRoot"); } DDataSet result = DDataSet.createRank2(coefficients.length(), 3); for( int i = 0; i < coefficients.length(); ++i ) { /* alternate method to check for correct size, is slightly faster if( coefficients.length(1) != 4 ) { throw new IllegalArgumentException( "Each row must be length 4 for cubicRoot"); }*/ double[] answers = cubicRoot( coefficients.value(i,0), coefficients.value(i,1), coefficients.value(i,2), coefficients.value(i,3) ); result.putValue(i, 0, answers[0]); result.putValue(i, 1, answers[1]); result.putValue(i, 2, answers[2]); } return result; } //end method cubicRoot() /** * Enter the coefficients for a cubic of the form: * a*x^3 + b*x^2 + c*x + d = 0. * Based on the method described at http://www.1728.org/cubic2.htm. * @param a Coefficient of x^3. * @param b Coefficient of x^2. * @param c Coefficient of x. * @param d Constant. * @return Array containing 3 roots. NaN will be returned for imaginary * roots. * @author Henry Livingston Wroblewski */ public static double[] cubicRoot(double a, double b, double c, double d) throws ArithmeticException { double[] result; //check for proper degree of polynomial if( a == 0.0 ) { throw new IllegalArgumentException("Coefficient of x^3 cannot be " + "0 for cubicRoot."); } double f = (3*c/a - b*b/(a*a))/3; double g = (2*b*b*b/(a*a*a) - 9*b*c/(a*a) + 27*d/a)/27; double h = g*g/4 + f*f*f/27; if( h > 0 ) //one real root { double r = -g/2 + Math.sqrt(h); double s = r > 0 ? Math.pow(r, 1.0/3.0) : - Math.pow(-r, 1.0/3.0); double t = -g/2 - Math.sqrt(h); double u = t > 0 ? Math.pow(t, 1.0/3.0) : -Math.pow(-t, 1.0/3.0); result = new double[3]; result[0] = s + u - b/(3*a); result[1] = Double.NaN; result[2] = Double.NaN; //imaginary results //result[1] = -(s + u)/2 - b/(3*a) + i*(s-u)*Math.sqrt(3)/2; //result[2] = -(s + u)/2 - b/(3*a) - i*(s-u)*Math.sqrt(3)/2; } else if( f == 0 && g == 0 && h == 0 ) //3 repeated roots { result = new double[3]; result[0] = result[1] = result[2] = - Math.pow(d/a, 1.0/3.0); } else if( h <= 0 ) //all real { double i = Math.sqrt(g*g/4 - h); double j = Math.pow(i, 1.0/3.0); double k = Math.acos(-g/(2*i)); double l = -j; double m = Math.cos(k/3); double n = Math.sqrt(3)*Math.sin(k/3); double P = -b/(3*a); result = new double[3]; result[0] = 2*j*Math.cos(k/3) - b/(3*a); result[1] = l*(m + n) + P; result[2] = l*(m - n) + P; } else { // we should never get here... throw new ArithmeticException("Undefined case in cubicRoot."); } return result; } //end method cubicRoot() /** * element-wise abs. For vectors, this returns the length of each element. * Note Jython conflict needs to be resolved. Note the result of this * will have dimensionless units, and see magnitude for the more abstract * operator. * For ratio-type units (Stevens) like "kms", the unit is preserved. * @param ds1 the dataset * @return dataset with the same geometry * @see Ops#magnitude(org.das2.qds.QDataSet) magnitude(ds), which preserves the sign. */ public static QDataSet abs(QDataSet ds1) { Units u= (Units) ds1.property(QDataSet.UNITS); if ( u!=null && u instanceof EnumerationUnits ) { throw new IllegalArgumentException("data is from an enumeration, and abs cannot be used."); } MutablePropertyDataSet result= applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double d1) { return Math.abs(d1); } }); result.putProperty( QDataSet.LABEL, maybeLabelUnaryOp( ds1, "abs") ); if ( u!=null && UnitsUtil.isRatioMeasurement(u) ) { result.putProperty( QDataSet.UNITS, u ); } return result; } /** * return the abs of the long, to support Jython properly. * @param x the long * @return abs of the long */ public static long abs( long x ) { return Math.abs( x ); } /** * return the abs of the double, to support Jython properly. * @param v the valye * @return abs of the value */ public static double abs( double v ) { return Math.abs( v ); } /** * promote the list, double, array etc to QDataSet before taking abs. * @param ds1 list, double, array, etc * @return the abs in a QDataSet */ public static QDataSet abs( Object ds1 ) { return abs( dataset(ds1) ); } /** * element-wise pow (** in FORTRAN, ^ in IDL) of two datasets with the compatible * geometry. * @param ds1 the base * @param pow the exponent * @return the value ds1**pow */ public static QDataSet pow(QDataSet ds1, QDataSet pow) { Units units1= SemanticOps.getUnits(ds1); Units units2= SemanticOps.getUnits(pow); if ( UnitsUtil.isTimeLocation(units1) ) throw new IllegalArgumentException("ds1 is time location"); if ( UnitsUtil.isTimeLocation(units2) ) throw new IllegalArgumentException("pow is time location"); MutablePropertyDataSet result= applyBinaryOp(ds1, pow, new BinaryOp() { @Override public double op(double d1, double d2) { return Math.pow(d1, d2); } }); result.putProperty( QDataSet.LABEL, maybeLabelBinaryOp( ds1, pow, "pow") ); return result; } /** * for Jython, we define this because the doubles aren't coerced. * Note that pow(2,4) returns a long, not an int like Python 2.6.5 * @param x the base * @param y the exponent * @return the value x**y */ public static long pow( long x, long y ) { return (long)Math.pow( x, y ); } /** * for Jython, we define this because the doubles aren't coerced. * Note that pow(2,4) returns a long, not an int like Python 2.6.5 * @param x the base * @param y the exponent * @return the value x**y */ public static double pow( double x, double y ) { return Math.pow( x,y ); } /** * element-wise pow (** in FORTRAN, ^ in IDL) of two datasets with the same * geometry. * @param ds1 the base * @param pow the exponent * @return the value ds1**pow */ public static QDataSet pow( Object ds1, Object pow ) { return pow( dataset(ds1), dataset(pow) ); } /** * element-wise exponentiate e**x. * @param ds the dataset * @return dataset of the same geometry */ public static QDataSet exp(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.pow(Math.E, d1); } }); result.putProperty( QDataSet.LABEL, maybeLabelUnaryOp( ds, "exp") ); return result; } /** * Jython requires this be implemented * @param d * @return e**d */ public static double exp( double d ) { return Math.exp( d ); } /** * convert array, list, double, etc to QDataSet and return exp(d) * @param ds1 requires this be implemented * @return exp(ds1) */ public static QDataSet exp( Object ds1 ) { return exp( dataset(ds1) ); } /** * element-wise exponentiate 10**x. * @param ds * @return */ public static QDataSet exp10(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.pow(10, d1); } }); result.putProperty( QDataSet.LABEL, maybeLabelUnaryOp( ds, "exp10") ); return result; } public static double exp10( double ds1 ) { return Math.pow( 10, ds1 ); } public static QDataSet exp10( Object ds1 ) { return exp10( dataset(ds1) ); } /** * element-wise natural logarithm. * @param ds * @return */ public static QDataSet log(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.log(d1); } }); result.putProperty( QDataSet.LABEL, maybeLabelUnaryOp( ds, "log") ); return result; } public static double log( double ds1 ) { return Math.log( ds1 ); } public static QDataSet log( Object ds1 ) { return log( dataset(ds1) ); } /** * element-wise base 10 logarithm. * @param ds * @return */ public static QDataSet log10(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.log10(d1); } }); result.putProperty( QDataSet.LABEL, maybeLabelUnaryOp( ds, "log10") ); return result; } public static double log10( double ds1 ) { return Math.log10( ds1 ); } public static QDataSet log10( Object ds1 ) { return log10( dataset(ds1) ); } /** * return the unit that is the product of the two units. Presently * this only works when one unit is dimensionless. * @param units1 e.g. Units.ergs * @param units2 e.g. Units.dimensionless * @return the product of the two units, e.g. Units.ergs */ private static Units multiplyUnits( Units units1, Units units2 ) { Units resultUnits; if ( units1==Units.dimensionless && units2==Units.dimensionless ) { resultUnits= Units.dimensionless; } else if ( units2==Units.dimensionless && UnitsUtil.isRatioMeasurement(units1) ) { resultUnits= units1; } else if ( units1==Units.dimensionless && UnitsUtil.isRatioMeasurement(units2) ) { resultUnits= units2; } else { if ( !UnitsUtil.isRatioMeasurement(units1) ) throw new IllegalArgumentException("ds1 units are not ratio units: "+units1); if ( !UnitsUtil.isRatioMeasurement(units2) ) { throw new IllegalArgumentException("ds2 units are not ratio units: "+units2); } logger.fine("throwing out units until we improve the units library, both arguments have physical units"); resultUnits= null; } return resultUnits; } /** * return true if the argument is complex, having a DEPEND with COORDINATE_FRAME * equal to ComplexNumber. * @param ds1 a QDataSet possibly containing complex components. * @return true of the dataset is complex. * @see Schemes#isComplexNumbers(org.das2.qds.QDataSet) */ private static boolean checkComplexArgument( QDataSet ds1 ) { QDataSet dep= (QDataSet) ds1.property("DEPEND_"+(ds1.rank()-1)); if ( dep==null ) return false; return QDataSet.VALUE_COORDINATE_FRAME_COMPLEX_NUMBER.equals(dep.property(QDataSet.COORDINATE_FRAME)); } /** * element-wise multiply of two datasets with compatible geometry. * Presently, either ds1 or ds2 should be dimensionless. * TODO: units improvements. * @param ds1 * @param ds2 * @see #multiplyUnits * @return */ public static QDataSet multiply(QDataSet ds1, QDataSet ds2) { Units units1= SemanticOps.getUnits(ds1); Units units2= SemanticOps.getUnits(ds2); Units resultUnits= multiplyUnits( units1, units2 ); if ( checkComplexArgument(ds1) && checkComplexArgument(ds2) ) { logger.warning("multiply used with two complex arguments, perhaps complexMultiply was intended"); } MutablePropertyDataSet result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 * d2; } }); if ( resultUnits!=Units.dimensionless ) result.putProperty( QDataSet.UNITS, resultUnits ); result.putProperty(QDataSet.LABEL, maybeLabelInfixOp( ds1, ds2, "*" ) ); return result; } public static QDataSet multiply( Object ds1, Object ds2 ) { return multiply( dataset(ds1), dataset(ds2) ); } /** * element-wise divide of two datasets with compatible geometry. Either * ds1 or ds2 should be dimensionless, or the units be convertible. * TODO: units improvements. * @param ds1 the numerator * @param ds2 the divisor * @return the ds1/ds2 */ public static QDataSet divide(QDataSet ds1, QDataSet ds2) { Units units1= SemanticOps.getUnits(ds1); Units units2= SemanticOps.getUnits(ds2); Units resultUnits; final UnitsConverter uc; if ( units1==units2 ) { resultUnits= Units.dimensionless; uc= UnitsConverter.IDENTITY; } else if ( units2==Units.dimensionless && UnitsUtil.isRatioMeasurement(units1) ) { resultUnits= units1; uc= UnitsConverter.IDENTITY; } else if ( units2.isConvertibleTo(units1) ) { resultUnits= Units.dimensionless; uc= units2.getConverter(units1); } else { if ( !UnitsUtil.isRatioMeasurement(units1) ) throw new IllegalArgumentException("ds1 units are not ratio units: "+units1); if ( !UnitsUtil.isRatioMeasurement(units2) ) throw new IllegalArgumentException("ds2 units are not ratio units: "+units2); if ( units1==Units.dimensionless ) { try { resultUnits= UnitsUtil.getInverseUnit(units2); } catch ( IllegalArgumentException ex ) { logger.info( String.format( "unable to invert ds2 units (%s), arguments have unequal units in divide (/)", units2 ) ); resultUnits= null; } } else { logger.info("throwing out units until we improve the units library, arguments have unequal units"); resultUnits= null; } uc= UnitsConverter.IDENTITY; } MutablePropertyDataSet result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 / uc.convert(d2); } }); if ( resultUnits!=Units.dimensionless ) result.putProperty( QDataSet.UNITS, resultUnits ); result.putProperty(QDataSet.LABEL, maybeLabelInfixOp( ds1, ds2, "/" ) ); return result; } public static QDataSet divide( Object ds1, Object ds2 ) { return divide( dataset(ds1), dataset(ds2) ); } /** * element-wise mod of two datasets with compatible geometry. * This should support Units.t2000 mod "24 hours" to get result in hours. * @param ds1 the numerator * @param ds2 the divisor * @return the remainder after the division */ public static QDataSet mod(QDataSet ds1, QDataSet ds2) { Units u1= SemanticOps.getUnits(ds1).getOffsetUnits(); Units u= SemanticOps.getUnits(ds2); final UnitsConverter uc= u1.getConverter(u); final double base= 0; MutablePropertyDataSet result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1-base ) % d2; } }); result.putProperty( QDataSet.UNITS, u ); return result; } public static QDataSet mod( Object ds1, Object ds2 ) { return mod( dataset(ds1), dataset(ds2) ); } /** * element-wise mod of two datasets with compatible geometry. This returns * a positive number for -18 % 10. This is Python's behavior. * This should support Units.t2000 mod "24 hours" to get result in hours. * @param ds1 the numerator * @param ds2 the divisor * @return the remainder after the division */ public static QDataSet modp(QDataSet ds1, QDataSet ds2) { Units u1= SemanticOps.getUnits(ds1).getOffsetUnits(); Units u= SemanticOps.getUnits(ds2); final UnitsConverter uc= u1.getConverter(u); final double base= 0; MutablePropertyDataSet result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { double t= uc.convert(d1-base ) % d2; return ( t<0 ) ? t+d2 : t; } }); result.putProperty( QDataSet.UNITS, u ); return result; } public static QDataSet modp( Object ds1, Object ds2 ) { return modp( dataset(ds1), dataset(ds2) ); } /** * This div goes with modp, where -18 divp 10 = -2 and -18 modp 10 = 8. * the div operator always goes towards zero, but divp always goes to * the more negative number so the remainder is positive. * @param ds1 * @param ds2 * @return */ public static QDataSet divp(QDataSet ds1, QDataSet ds2) { Units u1= SemanticOps.getUnits(ds1); Units u= SemanticOps.getUnits(ds2); final UnitsConverter uc; UnitsConverter uc1; try { uc1= u1.getConverter(u); } catch ( IllegalArgumentException ex ) { uc1= UnitsConverter.IDENTITY; } uc= uc1; MutablePropertyDataSet result= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return Math.floor( uc.convert(d1) / d2); } }); Units resultUnits= uc==UnitsConverter.IDENTITY ? u1 : Units.dimensionless; if ( resultUnits!=null ) result.putProperty( QDataSet.UNITS, resultUnits ); return result; } public static QDataSet divp( Object ds1, Object ds2 ) { return divp( dataset(ds1), dataset(ds2) ); } /** * element-wise div of two datasets with compatible geometry. * @param ds1 * @param ds2 * @return */ public static QDataSet div(QDataSet ds1, QDataSet ds2) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return (int) (d1 / d2); } }); } public static QDataSet div( Object ds1, Object ds2 ) { return div( dataset(ds1), dataset(ds2) ); } // comparators /** * element-wise equality test. 1.0 is returned where the two datasets are * equal. Fill is returned where either measurement is invalid. * @param ds1 rank n dataset * @param ds2 rank m dataset with compatible geometry. * @return rank n or m dataset. */ public static QDataSet eq(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) == d2 ? 1.0 : 0.0; } }); } /** * if ds1 is enumeration, then check if o2 could be interpreted as * such, otherwise return the existing interpretation. * @param ds1 null, or the context in which we interpret o2. * @param o2 the String, QDataSet, array, etc. * @param ds2 the fall-back when this is the correct interpretation. * @return */ private static QDataSet enumerationUnitsCheck( QDataSet ds1, Object o2, QDataSet ds2 ) { if ( ds1==null ) return ds2; Units u= SemanticOps.getUnits(ds1); if ( u instanceof EnumerationUnits ) { return Ops.dataset( o2, u ); } else { return ds2; } } /** * element-wise equality test, converting arguments as necessary to * like units. These datasets can be nominal data as well. * * @param ds1 * @param ds2 * @return */ public static QDataSet eq( Object ds1, Object ds2 ) { QDataSet dds1= dataset(ds1); QDataSet dds2= dataset(ds2); dds2= enumerationUnitsCheck( dds1, ds2, dds2 ); dds1= enumerationUnitsCheck( dds2, ds1, dds1 ); return eq( dds1, dds2 ); } /** * element-wise not equal test. 1.0 is returned where elements are not equal. * Fill is returned where either measurement is invalid. * @param ds1 * @param ds2 * @return */ public static QDataSet ne(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) != d2 ? 1.0 : 0.0; } }); } /** * element-wise equality test, converting arguments as necessary to * like units. These datasets can be nominal data as well. * * @param ds1 * @param ds2 * @return */ public static QDataSet ne( Object ds1, Object ds2 ) { QDataSet dds1= dataset(ds1); QDataSet dds2= dataset(ds2); dds2= enumerationUnitsCheck( dds1, ds2, dds2 ); dds1= enumerationUnitsCheck( dds2, ds1, dds1 ); return ne( dds1, dds2 ); } /** * element-wise function returns 1 where ds1>ds2. * @param ds1 * @param ds2 * @return */ public static QDataSet gt(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) > d2 ? 1.0 : 0.0; } }); } public static QDataSet gt( Object ds1, Object ds2 ) { return gt( dataset(ds1), dataset(ds2) ); } /** * element-wise function returns the greater of ds1 and ds2. * If an element of ds1 or ds2 is fill, then the result is fill. * @param ds1 * @param ds2 * @return the bigger of the two, in the units of ds1. */ public static QDataSet greaterOf(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds2, ds1 ); MutablePropertyDataSet mpds= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d2) > d1 ? d2 : d1; } }); mpds.putProperty( QDataSet.UNITS, ds1.property(QDataSet.UNITS) ); return mpds; } public static QDataSet greaterOf( Object ds1, Object ds2 ) { return greaterOf( dataset(ds1), dataset(ds2) ); } /** * element-wise function returns the smaller of ds1 and ds2. * If an element of ds1 or ds2 is fill, then the result is fill. * @param ds1 * @param ds2 * @return the smaller of the two, in the units of ds1. */ public static QDataSet lesserOf(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds2, ds1 ); MutablePropertyDataSet mpds= applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d2) < d1 ? d2 : d1; } }); mpds.putProperty( QDataSet.UNITS, ds1.property(QDataSet.UNITS) ); return mpds; } public static QDataSet lesserOf( Object ds1, Object ds2 ) { return lesserOf( dataset(ds1), dataset(ds2) ); } /** * element-wise function returns 1 where ds1>=ds2. * @param ds1 * @param ds2 * @return */ public static QDataSet ge(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) >= d2 ? 1.0 : 0.0; } }); } public static QDataSet ge( Object ds1, Object ds2 ) { return ge( dataset(ds1), dataset(ds2) ); } /** * element-wise function returns 1 where ds1<ds2. * @param ds1 * @param ds2 * @return */ public static QDataSet lt(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) < d2 ? 1.0 : 0.0; } }); } public static QDataSet lt( Object ds1, Object ds2 ) { return lt( dataset(ds1), dataset(ds2) ); } /** * element-wise function returns 1 where ds1<=ds2. * @param ds1 * @param ds2 * @return */ public static QDataSet le(QDataSet ds1, QDataSet ds2) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( ds1, ds2 ); return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return uc.convert(d1) <= d2 ? 1.0 : 0.0; } }); } public static QDataSet le( Object ds1, Object ds2 ) { return le( dataset(ds1), dataset(ds2) ); } // logic operators /** * element-wise logical or function. * returns 1 where ds1 is non-zero or ds2 is non-zero. * @param ds1 * @param ds2 * @return * @see #bitwiseOr(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet or(QDataSet ds1, QDataSet ds2) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 != 0 || d2 != 0 ? 1.0 : 0.0; } }); } public static QDataSet or( Object ds1, Object ds2 ) { return or( dataset(ds1), dataset(ds2) ); } /** * element-wise logical and function. non-zero is true, zero is false. * @param ds1 * @param ds2 * @return * @see #bitwiseAnd(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet and(QDataSet ds1, QDataSet ds2) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return d1 != 0 && d2 != 0 ? 1.0 : 0.0; } }); } public static QDataSet and( Object ds1, Object ds2 ) { return and( dataset(ds1), dataset(ds2) ); } /** * bitwise AND operator treats the data as (32-bit) integers, and * returns the bit-wise AND. * @param ds1 * @param ds2 * @return bit-wise AND. */ public static QDataSet bitwiseAnd( QDataSet ds1, QDataSet ds2 ) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return (long)d1 & (long)d2; } }); } public static QDataSet bitwiseAnd( Object ds1, Object ds2 ) { return bitwiseAnd( dataset(ds1), dataset(ds2) ); } /** * bitwise OR operator treats the data as (32-bit) integers, and * returns the bit-wise OR. * @param ds1 * @param ds2 * @return bit-wise OR. */ public static QDataSet bitwiseOr( QDataSet ds1, QDataSet ds2 ) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return (long)d1 | (long)d2; } }); } public static QDataSet bitwiseOr( Object ds1, Object ds2 ) { return bitwiseOr( dataset(ds1), dataset(ds2) ); } /** * bitwise XOR (exclusive or) operator treats the data as (32-bit) integers, and * returns the bit-wise XOR. Note there is no bitwise not, and this is because * there are no shorts, bytes. So to implement bitwise not for a 16 bit number * you would have bitwiseXor( ds, dataset(2**16-1) ). * @param ds1 * @param ds2 * @return bit-wise XOR. */ public static QDataSet bitwiseXor( QDataSet ds1, QDataSet ds2 ) { return applyBinaryOp(ds1, ds2, new BinaryOp() { @Override public double op(double d1, double d2) { return (long)d1 ^ (long)d2; } }); } public static QDataSet bitwiseXor( Object ds1, Object ds2 ) { return bitwiseXor( dataset(ds1), dataset(ds2) ); } /** * element-wise logical not function. non-zero is true, zero is false. * @param ds1 * @return * @see #bitwiseXor(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet not(QDataSet ds1) { return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double d1) { return d1 != 0 ? 0.0 : 1.0; } }); } public static QDataSet not( Object ds1 ) { return not( dataset(ds1) ); } // IDL,Matlab - inspired routines /** * returns rank 1 dataset with values [0,1,2,...] * This returns an immutable dataset, so that it can * be used in Jython like so: for i in indgen(200000). Note before * February 2018, this would return a mutable dataset, and now * this returns an IndexGenDataSet, which is immutable. * * @param len0 * @return */ public static QDataSet indgen(int len0) { return new IndexGenDataSet(len0); } /** * returns rank 2 dataset with values increasing [ [0,1,2], [ 3,4,5] ] * @param len0 * @param len1 * @return */ public static QDataSet indgen(int len0, int len1) { int size = len0 * len1; int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = i; } return IDataSet.wrap(back, 2, len0, len1, 1); } /** * returns rank 3 dataset with values increasing * @param len0 * @param len1 * @param len2 * @return */ public static QDataSet indgen(int len0, int len1, int len2) { int size = len0 * len1 * len2; int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = i; } return IDataSet.wrap(back, 3, len0, len1, len2); } /** * returns rank 1 dataset with values [0.,1.,2.,...] * @param len0 * @return */ public static QDataSet dindgen(int len0) { int size = len0; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = i; } return DDataSet.wrap(back, 1, len0, 1, 1); } /** * returns rank 2 dataset with values increasing [ [0.,1.,2.], [ 3.,4.,5.] ] * @param len0 * @param len1 * @return */ public static QDataSet dindgen(int len0, int len1) { int size = len0 * len1; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = i; } return DDataSet.wrap(back, 2, len0, len1, 1); } /** * returns rank 3 dataset with values increasing * @param len0 * @param len1 * @param len2 * @return */ public static QDataSet dindgen(int len0, int len1, int len2) { int size = len0 * len1 * len2; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = i; } return DDataSet.wrap(back, 3, len0, len1, len2); } /** * returns rank 4 dataset with values increasing * @param len0 * @param len1 * @param len2 * @param len3 * @return */ public static QDataSet dindgen(int len0, int len1, int len2, int len3 ) { int size = len0 * len1 * len2 * len3; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = i; } return DDataSet.wrap( back, new int[] { len0, len1, len2, len3 } ); } /** * returns rank 1 dataset with values [0.,1.,2.,...] * @param len0 * @return */ public static QDataSet findgen(int len0) { int size = len0; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = i; } return FDataSet.wrap(back, 1, len0, 1, 1); } /** * returns rank 2 dataset with values increasing [ [0.,1.,2.], [ 3.,4.,5.] ] * @param len0 * @param len1 * @return */ public static QDataSet findgen(int len0, int len1) { int size = len0 * len1; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = i; } return FDataSet.wrap(back, 2, len0, len1, 1); } /** * returns rank 3 dataset with values increasing * @param len0 * @param len1 * @param len2 * @return */ public static QDataSet findgen(int len0, int len1, int len2) { int size = len0 * len1 * len2; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = i; } return FDataSet.wrap(back, 3, len0, len1, len2); } /** * returns rank 4 dataset with values increasing * @param len0 * @param len1 * @param len2 * @param len3 * @return */ public static QDataSet findgen(int len0, int len1, int len2, int len3) { int size = len0 * len1 * len2 * len3; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = i; } return FDataSet.wrap( back, new int[] { len0, len1, len2, len3 } ); } /** * create a dataset filled with zeros, stored in 4-byte floats. * @param len0 the zeroth dimension length * @return rank 1 dataset filled with zeros. * @see #zeros(int) * @see #dblarr(int) */ public static QDataSet fltarr(int len0) { return Ops.replicate(0.f, len0); } public static QDataSet fltarr(int len0, int len1) { return Ops.replicate(0.f, len0, len1); } public static QDataSet fltarr(int len0, int len1, int len2) { return Ops.replicate(0.f, len0, len1, len2); } /** * create a dataset filled with zeros, stored in unsigned bytes. Each * element can contain numbers from 0 to 255. * @param len0 the zeroth dimension length * @return rank 1 dataset filled with zeros. * @see #dblarr(int) */ public static QDataSet bytarr(int len0) { return BufferDataSet.createRank1( BufferDataSet.UBYTE, len0 ); } /** * create a rank 2 dataset filled with zeros, stored in unsigned bytes. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @return rank 2 dataset filled with zeros. */ public static QDataSet bytarr(int len0, int len1) { return BufferDataSet.createRank2( BufferDataSet.UBYTE, len0, len1 ); } /** * create a rank 3 dataset filled with zeros, stored in unsigned bytes. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @param len2 the length of the second dimension. * @return rank 3 dataset filled with zeros. */ public static QDataSet bytarr(int len0, int len1, int len2) { return BufferDataSet.createRank3( BufferDataSet.UBYTE, len0, len1, len2 ); } /** * create a dataset filled with zeros, stored in 2-byte signed shorts. * Note that shortarr is equivalent to intarr in IDL, containing integer * values from -32768 to 32767. * @param len0 the zeroth dimension length * @return rank 1 dataset filled with zeros. * @see #zeros(int) * @see #dblarr(int) */ public static QDataSet shortarr(int len0) { return Ops.replicate((short)0, len0); } /** * create a rank 2 dataset filled with zeros, stored in 2-byte shorts. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @return rank 2 dataset filled with zeros. */ public static QDataSet shortarr(int len0, int len1) { return Ops.replicate((short)0, len0, len1); } /** * create a rank 3 dataset filled with zeros, stored in 2-byte shorts. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @param len2 the length of the second dimension. * @return rank 3 dataset filled with zeros. */ public static QDataSet shortarr(int len0, int len1, int len2) { return Ops.replicate((short)0, len0, len1, len2); } /** * create a dataset filled with zeros, stored in 4-byte ints. * @param len0 the zeroth dimension length * @return rank 1 dataset filled with zeros. * @see #zeros(int) * @see #dblarr(int) */ public static QDataSet intarr(int len0) { return Ops.replicate(0, len0); } /** * create a rank 2 dataset filled with zeros, stored in 4-byte ints. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @return rank 2 dataset filled with zeros. */ public static QDataSet intarr(int len0, int len1) { return Ops.replicate(0, len0, len1); } /** * create a rank 3 dataset filled with zeros, stored in 4-byte ints. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @param len2 the length of the second dimension. * @return rank 3 dataset filled with zeros. */ public static QDataSet intarr(int len0, int len1, int len2) { return Ops.replicate(0, len0, len1, len2); } /** * create a rank 1 dataset filled with zeros, stored in 8-byte doubles. * @param len0 the length of the zeroth dimension. * @return rank 1 dataset filled with zeros. * @see #zeros(int) * @see #fltarr(int) * @see #bytarr(int) * @see #shortarr(int) * @see #intarr(int) */ public static QDataSet dblarr(int len0) { return Ops.replicate(0., len0); } /** * create a rank 2 dataset filled with zeros, stored in 8-byte doubles. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @return rank 2 dataset filled with zeros. * @see #zeros(int) * @see #fltarr(int) */ public static QDataSet dblarr(int len0, int len1) { return Ops.replicate(0., len0, len1); } /** * create a rank 3 dataset filled with zeros, stored in 8-byte doubles. * @param len0 the length of the zeroth dimension. * @param len1 the length of the first dimension. * @param len2 the length of the second dimension. * @return rank 3 dataset filled with zeros. * @see #zeros(int) * @see #fltarr(int) */ public static QDataSet dblarr(int len0, int len1, int len2) { return Ops.replicate(0., len0, len1, len2); } /** * returns rank 1 dataset with values that are times. * @param baseTime e.g. "2003-02-04T00:00" * @param cadence e.g. "4.3 sec" "1 day" * @param len0 the number of elements. * @throws ParseException * @return */ public static QDataSet timegen(String baseTime, String cadence, int len0) throws ParseException { double base = TimeUtil.create(baseTime).doubleValue(Units.us2000); String[] ss= cadence.split(" "); Datum cad= null; if ( ss.length==2 ) { try { Units u= Units.lookupUnits(ss[1]); cad= u.parse(ss[0]); } catch ( ParseException ex ) { // try using old code below. } } if ( cad==null ) { cad= Units.us2000.getOffsetUnits().parse(cadence); } double dcadence = cad.doubleValue(Units.us2000.getOffsetUnits()); return taggen( base, dcadence, len0, Units.us2000 ); } /** * return a rank 1 dataset of times. All inputs should be rank 1 dataset (for now) or null. * @param years the years. (2010) Less than 100 is interpreted as 19xx. * @param mons the months (1..12), or null. If null, then days are day of year. These are interpreted as integers * @param days the day of month (1..28) or day of year. This may be fractional. * @param hour null or the hours of the day. * @param minute null or the minutes of the day * @param second null or the seconds of the day * @param nano null or the nanoseconds (1e-9) of the day * @return rank 1 time data set. */ public static QDataSet toTimeDataSet( QDataSet years, QDataSet mons, QDataSet days, QDataSet hour, QDataSet minute, QDataSet second, QDataSet nano ) { QDataSet[] operands= new QDataSet[2]; for ( int i=0; i<2; i++ ) { // two passes. if ( mons!=null ) { CoerceUtil.coerce( years, mons, true, operands ); years= operands[0]; mons= operands[1]; } CoerceUtil.coerce( years, days, true, operands ); years= operands[0]; days= operands[1]; if ( hour!=null ) { CoerceUtil.coerce( years, hour, true, operands ); years= operands[0]; hour= operands[1]; } if ( minute!=null ) { CoerceUtil.coerce( years, minute, true, operands ); years= operands[0]; minute= operands[1]; } if ( second!=null ) { CoerceUtil.coerce( years, second, true, operands ); years= operands[0]; second= operands[1]; } if ( nano!=null ) { CoerceUtil.coerce( years, nano, true, operands ); years= operands[0]; nano= operands[1]; } } WritableDataSet result= CoerceUtil.coerce( years, days, true, operands ); result.putProperty( QDataSet.UNITS, Units.us2000 ); if ( years.length()==0 ) { throw new IllegalArgumentException("Empty year array"); } if ( years.value(0)<100 ) { years= add( years, DataSetUtil.asDataSet(1900) ); } if ( mons==null ) { mons= Ops.ones( years.length() ); } // handle nulls with one array, and avoid condition tests within the loop QDataSet zeros= ConstantDataSet.create( 0., DataSetUtil.qubeDims(years) ); if ( hour==null ) hour= zeros; if ( minute==null ) minute= zeros; if ( second==null ) second= zeros; if ( nano==null ) nano= zeros; if ( years.rank()!=1 ) throw new IllegalArgumentException("years must be rank 1"); if ( mons.rank()!=1 ) throw new IllegalArgumentException("months must be rank 1 or null"); if ( days.rank()!=1 ) throw new IllegalArgumentException("days must be rank 1 or null"); if ( hour.rank()!=1 ) throw new IllegalArgumentException("hours must be rank 1 or null"); if ( minute.rank()!=1 ) throw new IllegalArgumentException("minutes must be rank 1 or null"); if ( second.rank()!=1 ) throw new IllegalArgumentException("seconds must be rank 1 or null"); if ( nano.rank()!=1 ) throw new IllegalArgumentException("nanos must be rank 1 or null"); for ( int i=0; i0 ) { throw new IllegalArgumentException("fractional year not allowed: "+ years.value(i) ); } if ( fmonth>0 ) { throw new IllegalArgumentException("fractional month not allowed: "+ mons.value(i) ); } int jd = 367 * year - 7 * (year + (month + 9) / 12) / 4 - 3 * ((year + (month - 9) / 7) / 100 + 1) / 4 + 275 * month / 9 + day + 1721029; double microseconds = nano.value(i)/1e3 + second.value(i)*1e6 + hour.value(i)*3600e6 + minute.value(i)*60e6 + fday*86400000000.; double us2000= UnitsConverter.getConverter(Units.mj1958,Units.us2000).convert(( jd - 2436205 )) + microseconds; result.putValue( i, us2000 ); } return result; } public static QDataSet toTimeDataSet( Object years, Object mons, Object days, Object hour, Object minute, Object second, Object nano ) { return toTimeDataSet( dataset(years), dataset( mons), dataset( days), dataset( hour), dataset( minute), dataset( second), dataset( nano ) ); } /** * creates tags. First tag will be start and they will increase by cadence. Units specifies * the units of each tag. * @param base * @param dcadence * @param len0 * @param units * @return */ public static MutablePropertyDataSet taggen( double base, double dcadence, int len0, Units units ) { double[] back = new double[len0]; for (int i = 0; i < len0; i++) { back[i] = base + i * dcadence; } DDataSet result = DDataSet.wrap(back, 1, len0, 1, 1); result.putProperty(QDataSet.UNITS, units ); result.putProperty(QDataSet.MONOTONIC, Boolean.TRUE); return result; } /** * return a rank 1 dataset with len0 linearly-spaced values, the first * is min and the last is max. * @param min double * @param max double * @param len0 number of elements in the result * @return rank 1 dataset of linearly spaced data. */ public static QDataSet linspace(double min, double max, int len0) { double[] back = new double[len0]; if (len0 < 1) { return DDataSet.wrap(new double[]{max}); } else { double delta = (max - min) / (len0 - 1); for (int i = 0; i < len0; i++) { back[i] = min + i * delta; } return DDataSet.wrap(back, 1, len0, 1, 1); } } /** * return a rank 1 dataset with len0 linearly-spaced values, the first * is min and the last is max. * @param omin rank 0 dataset * @param omax rank 0 dataset * @param len0 number of elements in the result * @return rank 1 dataset of linearly spaced data. */ public static QDataSet linspace( Object omin, Object omax, int len0) { QDataSet dsmin= dataset(omin); QDataSet dsmax= dataset(omax); Units u= SemanticOps.getUnits(dsmin); double min= dsmin.value(); double max= convertUnitsTo( dsmax, u ).value(); QDataSet result= linspace( min, max, len0 ); return putProperty( result, QDataSet.UNITS, u ); } /** * return a rank 1 dataset with len0 logarithmically-spaced values, the first * is min and the last is max. * @param min double * @param max double * @param len0 number of elements in the result * @return rank 1 dataset of logarithmically spaced data. */ public static QDataSet logspace(double min, double max, int len0) { if (len0 < 1) { return DDataSet.wrap(new double[]{max}); } else { return pow( 10, linspace( Math.log10(min), Math.log10(max), len0 ) ); } } /** * return a rank 1 dataset with len0 logarithmically-spaced values, the first * is min and the last is max. * @param omin rank 0 dataset * @param omax rank 0 dataset * @param len0 number of elements in the result * @return rank 1 dataset of logarithmically spaced data. */ public static QDataSet logspace( Object omin, Object omax, int len0) { QDataSet dsmin= dataset(omin); QDataSet dsmax= dataset(omax); Units u= SemanticOps.getUnits(dsmin); double min= dsmin.value(); double max= convertUnitsTo( dsmax, u ).value(); QDataSet result= pow( 10, linspace( Math.log10(min), Math.log10(max), len0 ) ); return putProperty( result, QDataSet.UNITS, u ); } /** * returns rank 1 dataset with value * @param val fill the dataset with this value. * @param len0 * @return */ public static WritableDataSet replicate(short val, int len0) { int size = len0; short[] back = new short[size]; for (int i = 0; i < size; i++) { back[i] = val; } return SDataSet.wrap( back, 1, len0, 1, 1, 1 ); } /** * returns rank 2 dataset filled with value * @param val fill the dataset with this value. * @param len0 * @param len1 * @return */ public static WritableDataSet replicate(short val, int len0, int len1) { int size = len0 * len1; short[] back = new short[size]; for (int i = 0; i < size; i++) { back[i] = val; } return SDataSet.wrap(back, 2, len0, len1, 1, 1 ); } /** * returns rank 3 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet replicate(short val, int len0, int len1, int len2) { int size = len0 * len1 * len2; short[] back = new short[size]; for (int i = 0; i < size; i++) { back[i] = val; } return SDataSet.wrap(back, 3, len0, len1, len2, 1); } /** * returns rank 1 dataset with value * @param val fill the dataset with this value. * @param len0 * @return */ public static WritableDataSet replicate(int val, int len0) { int size = len0; int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = val; } return IDataSet.wrap( back, 1, len0, 1, 1, 1 ); } /** * returns rank 2 dataset filled with value * @param val fill the dataset with this value. * @param len0 * @param len1 * @return */ public static WritableDataSet replicate(int val, int len0, int len1) { int size = len0 * len1; int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = val; } return IDataSet.wrap(back, 2, len0, len1, 1, 1 ); } /** * returns rank 3 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet replicate(int val, int len0, int len1, int len2) { int size = len0 * len1 * len2; int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = val; } return IDataSet.wrap(back, 3, len0, len1, len2, 1); } /** * returns rank 1 dataset with value * @param val fill the dataset with this value. * @param len0 * @return */ public static WritableDataSet replicate(long val, int len0) { int size = len0; long[] back = new long[size]; for (int i = 0; i < size; i++) { back[i] = val; } return LDataSet.wrap( back, 1, len0, 1, 1, 1 ); } /** * returns rank 2 dataset filled with value * @param val fill the dataset with this value. * @param len0 * @param len1 * @return */ public static WritableDataSet replicate(long val, int len0, int len1) { int size = len0 * len1; long[] back = new long[size]; for (int i = 0; i < size; i++) { back[i] = val; } return LDataSet.wrap(back, 2, len0, len1, 1, 1 ); } /** * returns rank 3 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet replicate(long val, int len0, int len1, int len2) { int size = len0 * len1 * len2; long[] back = new long[size]; for (int i = 0; i < size; i++) { back[i] = val; } return LDataSet.wrap(back, 3, len0, len1, len2, 1); } /** * returns rank 1 dataset with value * @param val fill the dataset with this value. * @param len0 * @return */ public static WritableDataSet replicate(double val, int len0) { int size = len0; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = val; } return DDataSet.wrap(back, 1, len0, 1, 1); } /** * returns rank 2 dataset filled with value * @param val fill the dataset with this value. * @param len0 * @param len1 * @return */ public static WritableDataSet replicate(double val, int len0, int len1) { int size = len0 * len1; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = val; } return DDataSet.wrap(back, 2, len0, len1, 1); } /** * returns rank 3 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet replicate(double val, int len0, int len1, int len2) { int size = len0 * len1 * len2; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = val; } return DDataSet.wrap(back, 3, len0, len1, len2); } /** * returns rank 4 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @param len3 * @return */ public static WritableDataSet replicate(double val, int len0, int len1, int len2, int len3 ) { int size = len0 * len1 * len2 * len3; double[] back = new double[size]; for (int i = 0; i < size; i++) { back[i] = val; } return DDataSet.wrap(back, 4, len0, len1, len2, len3 ); } /** * returns rank 1 dataset with value * @param val fill the dataset with this value. * @param len0 * @return */ public static WritableDataSet replicate(float val, int len0) { int size = len0; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = val; } return FDataSet.wrap(back, 1, len0, 1, 1); } /** * returns rank 2 dataset filled with value * @param val fill the dataset with this value. * @param len0 * @param len1 * @return */ public static WritableDataSet replicate(float val, int len0, int len1) { int size = len0 * len1; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = val; } return FDataSet.wrap(back, 2, len0, len1, 1); } /** * returns rank 3 dataset with filled with value. * @param val fill the dataset with this value. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet replicate(float val, int len0, int len1, int len2) { int size = len0 * len1 * len2; float[] back = new float[size]; for (int i = 0; i < size; i++) { back[i] = val; } return FDataSet.wrap(back, 3, len0, len1, len2); } /** * returns a rank N+1 dataset by repeating the rank N dataset, so * all records will have the same value. E.g. result.value(i,j)= val.value(j) * @param val the rank N dataset * @param len0 the number of times to repeat * @return rank N+1 dataset. */ public static MutablePropertyDataSet replicate( final QDataSet val, final int len0 ) { return new ReplicateDataSet( val, len0 ); } /** * return new dataset filled with zeros. * @param len0 * @return * @see #fltarr(int) fltarr, which stores the data in 4-byte floats. */ public static WritableDataSet zeros(int len0) { return replicate(0.0, len0); } /** * return new dataset filled with zeros. * @param len0 * @param len1 * @return */ public static WritableDataSet zeros(int len0, int len1) { return replicate(0.0, len0, len1); } /** * return new dataset filled with zeros. * @param len0 * @param len1 * @param len2 * @return */ public static WritableDataSet zeros(int len0, int len1, int len2) { return replicate(0.0, len0, len1, len2); } /** * return a new dataset filled with zeroes that has the same geometry as * the given dataset. * Only supports QUBE datasets. * @param ds * @return a new dataset with filled with zeroes with the same geometry. */ public static WritableDataSet zeros( QDataSet ds ) { return DDataSet.create( DataSetUtil.qubeDims(ds) ); } /** * return new dataset filled with ones. * @param len0 the length of the first index. * @return dataset filled with ones. */ public static QDataSet ones(int len0) { return replicate(1.0, len0); } /** * return a rank two dataset filled with ones. This is currently mutable, but future versions may not be. * @param len0 the length of the first index. * @param len1 the length of the second index. * @return dataset filled with ones. */ public static QDataSet ones( final int len0, final int len1) { boolean returnMutableCopy= true; // for demonstration purposes, see http://sourceforge.net/p/autoplot/bugs/1148/ if ( returnMutableCopy ) { return replicate(1.0, len0, len1); } else { return new AbstractDataSet() { @Override public int rank() { return 2; } @Override public int length() { return len0; } @Override public int length(int i0) { return len1; } @Override public double value(int i0,int i1) { return 1.; } }; } } /** * return new dataset filled with ones. * @param len0 the length of the first index. * @param len1 the length of the second index. * @param len2 the length of the third index. * @return dataset filled with ones. */ public static QDataSet ones(int len0, int len1, int len2) { return replicate(1.0, len0, len1, len2); } /** * return new dataset filled with ones. * @param len0 the length of the first index. * @param len1 the length of the second index. * @param len2 the length of the third index. * @param len3 the length of the fourth index. * @return dataset filled with ones. */ public static QDataSet ones(int len0, int len1, int len2, int len3 ) { return replicate(1.0, len0, len1, len2, len3 ); } /** * concatenates the two datasets together, appending the datasets on the zeroth dimension. * The two datasets must be QUBES have similar geometry on the higher dimensions. * If one of the datasets is rank 0 and the geometry of the other is rank 1, then * the lower rank dataset is promoted before appending. If the first dataset * is null and the second is non-null, then return the second dataset. * * @param ds1 null or a dataset of length m. * @param ds2 dataset of length n to be concatenated. * @return a dataset length m+n. * @throws IllegalArgumentException if the two datasets don't have the same rank. * @see #merge(org.das2.qds.QDataSet, org.das2.qds.QDataSet) merge(ds1,ds2), which will interleave to preserve monotonic. * @see #append(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @deprecated use append instead. */ public static QDataSet concatenate(QDataSet ds1, QDataSet ds2) { return append( ds1, ds2 ); } public static QDataSet concatenate( Object ds1, Object ds2 ) { return append( dataset(ds1), dataset(ds2) ); } /** * return returns a rank N dataset of uniform numbers from [0,1]. * @param qube the dimensions of the result. * @return the result */ private static QDataSet randu(int[] qube, Random rand) { DDataSet result = DDataSet.create(qube); QubeDataSetIterator it = new QubeDataSetIterator(result); while (it.hasNext()) { it.next(); it.putValue(result, rand.nextDouble()); } return result; } /** * return returns a rank N dataset of random numbers of a Gaussian (normal) distribution. * @param qube the dimensions of the result. * @return */ private static QDataSet randn(int[] qube, Random rand) { DDataSet result = DDataSet.create(qube); QubeDataSetIterator it = new QubeDataSetIterator(result); while (it.hasNext()) { it.next(); it.putValue(result, rand.nextGaussian()); } return result; } /** * returns a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. * @deprecated use randu instead */ public static QDataSet rand() { return randu( ); } /** * returns a rank 1 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the result. * @return a rank 1 dataset of random uniform numbers from 0 to 1 but not including 1. * @deprecated use randu instead. This is used in many test programs and Jython codes, and will not be removed. */ public static QDataSet rand(int len0) { return randu( len0 ); } /** * returns a rank 2 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @return a rank 2 dataset of random uniform numbers from 0 to 1 but not including 1. * @deprecated use randu instead */ public static QDataSet rand(int len0, int len1) { return randu( len0, len1 ); } /** * returns a rank 3 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @param len2 the number of elements in the third index. * @return a rank 3 dataset of random uniform numbers from 0 to 1 but not including 1. * @deprecated use randu instead */ public static QDataSet rand(int len0, int len1, int len2) { return randu( len0, len1, len2 ); } /** * returns a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randu() { return randu(new int[]{}, random ); } /** * returns a rank 1 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the result. * @return a rank 1 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randu(int len0) { return randu(new int[]{len0}, random ); } /** * returns a rank 2 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @return a rank 2 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randu(int len0, int len1) { return randu(new int[]{len0, len1}, random ); } /** * returns a rank 3 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @param len2 the number of elements in the third index. * @return a rank 3 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randu(int len0, int len1, int len2) { return randu(new int[]{len0, len1, len2}, random ); } /** * return a rank 4 dataset of random uniform numbers from 0 to 1 but not including 1. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @param len2 the number of elements in the third index. * @param len3 the number of elements in the fourth index. * @return a rank 4 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randu(int len0, int len1, int len2, int len3) { return randu(new int[]{len0, len1, len2, len3}, random ); } /** * return a rank 0 dataset of random numbers of a Gaussian (normal) distribution. * @return a rank 0 dataset of random numbers of a Gaussian (normal) distribution. */ public static QDataSet randn() { return randn(new int[]{}, random ); } /** * return a rank 1 dataset of random numbers of a Gaussian (normal) distribution. * @param len0 the number of elements in the first index. * @return a rank 1 dataset of random numbers of a Gaussian (normal) distribution. */ public static QDataSet randn(int len0) { return randn(new int[]{len0}, random ); } /** * return a rank 2 dataset of random numbers of a Gaussian (normal) distribution. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @return a rank 2 dataset of random numbers of a Gaussian (normal) distribution. */ public static QDataSet randn(int len0, int len1) { return randn(new int[]{len0, len1}, random ); } /** * return a rank 3 dataset of random numbers of a Gaussian (normal) distribution. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @param len2 the number of elements in the third index. * @return a rank 3 dataset of random numbers of a Gaussian (normal) distribution. */ public static QDataSet randn(int len0, int len1, int len2) { return randn(new int[]{len0, len1, len2}, random ); } /** * return a rank 4 dataset of random numbers of a Gaussian (normal) distribution. * @param len0 the number of elements in the first index. * @param len1 the number of elements in the second index. * @param len2 the number of elements in the third index. * @param len3 the number of elements in the fourth index. * @return a rank 4 dataset of random numbers of a Gaussian (normal) distribution. */ public static QDataSet randn(int len0, int len1, int len2, int len3) { return randn(new int[]{len0, len1, len2, len3}, random ); } private static Random random= new Random(); /** * restart the random sequence used by randu and randn. Note if there * if there are multiple threads using random functions, this becomes * unpredictable. * @return the seed is returned. */ public static long randomSeed() { long seed; try { seed= java.security.SecureRandom.getInstance("SHA1PRNG").nextLong(); //findbugs DMI_RANDOM_USED_ONLY_ONCE suggests this. } catch ( NoSuchAlgorithmException ex ) { seed= 0; } random= new Random(seed); return seed; } /** * reset the random sequence used by randu and randn to the given seed. * @param seed the new seed for the sequence. * @return the seed (which will be the same as the input). */ public static long randomSeed( long seed ) { random= new Random(seed); return seed; } /** * returns a rank 0 dataset of random numbers of a Gaussian (normal) distribution. * System.currentTimeMillis() may be used for the seed. Note this is unlike * the IDL randomn function because the seed is not modified. (Any long parameter in Jython * and Java is read-only.) * System.currentTimeMillis() may be used for the seed. * @param seed basis for the random number (which will not be modified). * @return rank 0 dataset */ public static QDataSet randomn(long seed) { double[] back = randomnBack(seed,1); return DDataSet.wrap( back, 0, 1, 1, 1); } /** * returns a rank 1 dataset of random numbers of a Gaussian (normal) distribution. * System.currentTimeMillis() may be used for the seed. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @return rank 1 dataset of normal distribution */ public static QDataSet randomn(long seed, int len0) { double[] back = randomnBack(seed, len0); return DDataSet.wrap(back, 1, len0, 1, 1); } /** * returns a rank 2 dataset of random numbers of a Gaussian (normal) distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @return rank 2 dataset of normal distribution */ public static QDataSet randomn(long seed, int len0, int len1) { double[] back = randomnBack(seed, len0 * len1 ); return DDataSet.wrap(back, 2, len0, len1, 1); } /** * returns a rank 3 dataset of random numbers of a gaussian (normal) distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @param len2 number of elements in the third index * @return rank 3 dataset of normal distribution */ public static QDataSet randomn(long seed, int len0, int len1, int len2) { double[] back = randomnBack(seed, len0 * len1 * len2 ); return DDataSet.wrap(back, 3, len0, len1, len2); } /** * returns a rank 3 dataset of random numbers of a gaussian (normal) distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @param len2 number of elements in the third index * @param len3 number of elements in the fourth index * @return rank 4 dataset of normal distribution */ public static QDataSet randomn(long seed, int len0, int len1, int len2, int len3 ) { double[] back = randomnBack(seed, len0 * len1 * len2 ); return DDataSet.wrap(back, 4, len0, len1, len2, len3 ); } private static double[] randomnBack( long seed, int size ) { double[] back = new double[size]; Random r = new Random(seed); for (int i = 0; i < size; i++) { back[i] = r.nextGaussian(); } return back; } private static double[] randomuBack( long seed, int size ) { double[] back = new double[size]; Random r = new Random(seed); for (int i = 0; i < size; i++) { back[i] = r.nextDouble(); } return back; } /** * returns a rank 0 dataset of random numbers of a uniform distribution. * System.currentTimeMillis() may be used for the seed. Note this is unlike * the IDL randomn function because the seed is not modified. (Any long parameter in Jython * and Java is read-only.) * @param seed basis for the random number (which will not be modified). * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randomu(long seed) { double[] back = randomuBack(seed, 1); return DDataSet.wrap(back, 0, 1, 1, 1); } /** * returns a rank 1 dataset of random numbers of a uniform distribution. * System.currentTimeMillis() may be used for the seed. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randomu(long seed, int len0) { double[] back = randomuBack(seed, len0); return DDataSet.wrap(back, 1, len0, 1, 1); } /** * returns a rank 2 dataset of random numbers of a uniform distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randomu(long seed, int len0, int len1) { double[] back = randomuBack(seed, len0 * len1 ); return DDataSet.wrap(back, 2, len0, len1, 1); } /** * returns a rank 3 dataset of random numbers of a uniform distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @param len2 number of elements in the third index * @return a rank 0 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randomu(long seed, int len0, int len1, int len2) { double[] back = randomuBack(seed, len0 * len1 * len2 ); return DDataSet.wrap(back, 3, len0, len1, len2); } /** * returns a rank 3 dataset of random numbers of a uniform distribution. * @param seed basis for the random number (which will not be modified). * @param len0 number of elements in the first index * @param len1 number of elements in the second index * @param len2 number of elements in the third index * @param len3 number of elements in the fourth index * @return rank 4 dataset of random uniform numbers from 0 to 1 but not including 1. */ public static QDataSet randomu(long seed, int len0, int len1, int len2, int len3 ) { double[] back = randomuBack(seed, len0 * len1 * len2 ); return DDataSet.wrap(back, 4, len0, len1, len2, len3 ); } /** * return a table of distances d[len0] to the indeces c0; in units of r0. * This is motivated by a need for more interesting datasets for testing. * @param len0 the length of the dataset * @param c0 the center point 0 * @param r0 the units to normalize in the 0 direction * @return rank 2 table */ public static QDataSet distance( int len0, double c0, double r0 ) { DDataSet result= DDataSet.createRank1(len0); for ( int i=0; i3 ) { colors= DataSetOps.unbundle( vds,2 ); } else { colors= Ops.replicate( defaultColor, xmins.length() ); } } else if ( dep0.rank()==2 ) { if ( SemanticOps.isBins(dep0) ) { xmins= DataSetOps.slice1( dep0, 0 ); xmaxs= DataSetOps.slice1( dep0, 1 ); colors= Ops.replicate( 0x808080, xmins.length() ); Units u0= SemanticOps.getUnits(xmins ); Units u1= SemanticOps.getUnits(xmaxs ); if ( !u1.isConvertibleTo(u0) && u1.isConvertibleTo(u0.getOffsetUnits()) ) { xmaxs= Ops.add( xmins, xmaxs ); } } else { throw new IllegalArgumentException( "DEPEND_0 is rank 2 but not bins" ); } } else if ( dep0.rank() == 1 ) { Datum width= SemanticOps.guessXTagWidth( dep0, null ).divide(2); xmins= Ops.subtract(dep0, org.das2.qds.DataSetUtil.asDataSet(width) ); xmaxs= Ops.add(dep0, org.das2.qds.DataSetUtil.asDataSet(width) ); colors= Ops.replicate( defaultColor, xmins.length() ); } else { throw new IllegalArgumentException( "rank 2 dataset must have dep0 of rank 1 or rank 2 bins" ); } msgs= DataSetOps.unbundle( vds, vds.length(0)-1 ); break; } case 1: { QDataSet dep0= (QDataSet) vds.property(QDataSet.DEPEND_0); if ( dep0==null ) { if ( UnitsUtil.isTimeLocation(SemanticOps.getUnits(vds)) ) { dep0= vds; } } if ( dep0==null ) { throw new IllegalArgumentException("cannot make events data set from this rank 1 dataset with no timetags."); } else if ( dep0.rank() == 2 ) { if ( SemanticOps.isBins(dep0) ) { xmins= DataSetOps.slice1( dep0, 0 ); xmaxs= DataSetOps.slice1( dep0, 1 ); Units u0= SemanticOps.getUnits(xmins ); Units u1= SemanticOps.getUnits(xmaxs ); if ( !u1.isConvertibleTo(u0) && u1.isConvertibleTo(u0.getOffsetUnits()) ) { xmaxs= Ops.add( xmins, xmaxs ); } msgs= vds; } else { throw new IllegalArgumentException("DEPEND_0 is rank 2 but not bins"); } } else if ( dep0.rank() == 1 ) { Datum width= SemanticOps.guessXTagWidth( dep0, null ); if ( width!=null ) { width= width.divide(2); } else { QDataSet sort= Ops.sort(dep0); QDataSet diffs= Ops.diff( DataSetOps.applyIndex(dep0,0,sort,false) ); QDataSet w= Ops.reduceMin( diffs,0 ); width= DataSetUtil.asDatum(w); } xmins= Ops.subtract(dep0, org.das2.qds.DataSetUtil.asDataSet(width) ); xmaxs= Ops.add(dep0, org.das2.qds.DataSetUtil.asDataSet(width) ); if ( vds==dep0 ) { msgs= Ops.replicate( dataset( EnumerationUnits.create("default").createDatum("_") ), vds.length() ); } else { msgs= vds; } } else { throw new IllegalArgumentException("dataset is not correct form"); } Color c0= new Color( defaultColor ); Color c1= new Color( c0.getRed(), c0.getGreen(), c0.getBlue(), c0.getAlpha()==255 ? 128 : c0.getAlpha() ); int irgb= c1.getRGB(); colors= Ops.replicate( irgb, xmins.length() ); break; } case 0: { xmins= Ops.replicate(vds,1); // increase rank from 0 to 1. xmaxs= xmins; Color c0= new Color( defaultColor ); Color c1= new Color( c0.getRed(), c0.getGreen(), c0.getBlue(), c0.getAlpha()==255 ? 128 : c0.getAlpha() ); int irgb= c1.getRGB(); colors= Ops.replicate( irgb, xmins.length() ); msgs= Ops.replicate(vds,1); break; } default: throw new IllegalArgumentException("dataset must be rank 0, 1 or 2"); } Units u0= SemanticOps.getUnits( xmins ); Units u1= SemanticOps.getUnits( xmaxs ); if ( u1.isConvertibleTo( u0.getOffsetUnits() ) && !u1.isConvertibleTo(u0) ) { // maxes are dt instead of stopt. xmaxs= Ops.add( xmins, xmaxs ); xmaxs= putProperty( xmaxs, QDataSet.NAME, "StopTime" ); xmaxs= putProperty( xmaxs, QDataSet.DEPEND_0, null ); xmaxs= putProperty( xmaxs, QDataSet.LABEL, null ); } colors= Ops.putProperty( colors, QDataSet.FORMAT, "0x%08x" ); QDataSet lds= Ops.bundle( xmins, xmaxs, colors, msgs ); return lds; } /** * return the values which occur in both rank 1 datasets. Each dataset is sorted. * @param itE a bunch of values. * @param itB a bunch of values. * @return the set of values found in both. * @see #eventsConjunction(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static int[] dataIntersection( int[] itE, int[] itB ) { QDataSet tE= dataset( itE ); QDataSet tB= dataset( itB ); QDataSet dsr= dataIntersection( tE, tB ); int[] result= new int[dsr.length()]; for ( int i=0; ib ) { iB++; } else if ( etB.value(iB,0)) { state= "tEB"; start= tB.slice(iB).slice(0); } break; case "tB": if ( tB.value(iB,1)<=tE.value(iE,0) ) { state= "open"; iB= iB+1; } else if ( tB.value(iB,1)>tE.value(iE,0) ) { state= "tEB"; start= tE.slice(iE).slice(0); } break; case "tEB": if ( tE.value(iE,1)<= tB.value(iB,1) ) { state= "tB"; dsb.nextRecord( start, tE.slice(iE).slice(1), 0xA0A0A0, eu.createDatum("x") ); start= null; iE= iE+1; } else if ( tB.value(iB,1)<=tE.value(iE,1) ) { state= "tE"; dsb.nextRecord( start, tB.slice(iB).slice(1), 0xA0A0A0, eu.createDatum("x") ); start= null; iB= iB+1; } else { System.err.println("huh"); } break; case "open": if ( tE.value(iE,0)<=tB.value(iB,0) ) { state= "tE"; } else if ( tE.value(iE,0)>tB.value(iB,0) ) { state= "tB"; } break; default: break; } } dsb.putProperty( QDataSet.BUNDLE_1, tE4.property(QDataSet.BUNDLE_1 ) ); //dsb.putProperty( QDataSet.BINS_1, QDataSet.VALUE_BINS_MIN_MAX ); QDataSet result= dsb.getDataSet(); return result; } /** * return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. * @param x the x coordinate of the circle * @param y the y coordinate of the circle * @param radius rank 0 dataset * @return QDataSet that when plotted is a circle. */ public static QDataSet circle( QDataSet radius, QDataSet x, QDataSet y ) { if ( radius==null ) radius= DataSetUtil.asDataSet(1.); MutablePropertyDataSet result= (MutablePropertyDataSet) Ops.link( Ops.add( x, Ops.multiply( radius, sin(linspace(0,601*PI/300,601) ) ) ), Ops.add( y, Ops.multiply( radius, cos(linspace(0,601*PI/300,601 ) ) ) ) ); result.putProperty( QDataSet.RENDER_TYPE, "series" ); return result; } /** * return a dataset with X and Y forming a circle, introduced as a * convenient way to indicate planet location. Note this is presently * returned as Y[X], but should probably return a rank 2 dataset that is a * bundle. * @param x the x coordinate of the circle * @param y the y coordinate of the circle * @param radius rank 0 dataset * @return QDataSet that when plotted is a circle. */ public static QDataSet circle( double radius, double x, double y ) { return circle( dataset(radius), dataset(x), dataset(y) ); } /** * return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. * @param radius rank 0 dataset * @return QDataSet that when plotted is a circle. */ public static QDataSet circle( QDataSet radius ) { if ( radius==null ) radius= DataSetUtil.asDataSet(1.); MutablePropertyDataSet result= (MutablePropertyDataSet) Ops.link( Ops.multiply( radius, sin(linspace(0,601*PI/300,601) ) ), Ops.multiply( radius, cos(linspace(0,601*PI/300,601 ) ) ) ); result.putProperty( QDataSet.RENDER_TYPE, "series" ); return result; } /** * return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. * @param dradius * @return QDataSet that when plotted is a circle. */ public static QDataSet circle( double dradius ) { QDataSet radius= DataSetUtil.asDataSet(dradius); return circle( radius ); } /** * return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. * @param sradius string parsed into rank 0 dataset * @return QDataSet that when plotted is a circle. * @throws java.text.ParseException */ public static QDataSet circle( String sradius ) throws ParseException { QDataSet radius; if ( sradius==null ) { radius= DataSetUtil.asDataSet(1.); } else { Datum d; try { d= DatumUtil.parse(sradius); } catch ( ParseException ex ) { String[] ss= sradius.split(" ", 2); if ( ss.length==2 ) { Units u= Units.lookupUnits(ss[1]); d= u.parse(ss[0]); // double.parseDouble } else { throw new IllegalArgumentException("unable to parse: "+sradius ); } } radius= DataSetUtil.asDataSet( d ); } return circle( radius ); } /** * copies the properties, copying depend datasets as well. * TODO: This is not thorough, and this needs to be reviewed. * @param ds the data from which the properties are extracted. * @return a map of the properties. * @see DataSetUtil#getProperties(org.das2.qds.QDataSet) */ public static Map copyProperties( QDataSet ds ) { Map result = new HashMap(); Map srcProps= DataSetUtil.getProperties(ds); result.putAll(srcProps); for ( int i=0; i < ds.rank(); i++) { QDataSet dep = (QDataSet) ds.property("DEPEND_" + i); if (dep == ds) { throw new IllegalArgumentException("dataset is dependent on itsself!"); } if (dep != null) { result.put("DEPEND_" + i, copy(dep) ); // for timetags } } for (int i = 0; i < QDataSet.MAX_PLANE_COUNT; i++) { QDataSet plane0 = (QDataSet) ds.property("PLANE_" + i); if (plane0 != null) { result.put("PLANE_" + i, copy(plane0)); } else { break; } } return result; } /** * copy over all the indexed properties into the mutable property dataset. * This was introduced to support DataSetOps.unbundle, but should probably * always be used. * See https://sourceforge.net/p/autoplot/bugs/1704/ * * @param srcds the source dataset * @param mds the destination dataset */ public static void copyIndexedProperties(QDataSet srcds, MutablePropertyDataSet mds) { String[] names = propertyNames(); for (String name : names) { for ( int i=0; i0 ) { double a1=dep0.value(i); if ( a1>a ) { rback[rindex]= i; a= a1; rindex++; } else { logger.log(Level.FINER, "data point breaks monotonic rule: {0}", i); } } } int lindex=dep0.length()/2; a= dep0.value(lindex+1); for ( int i=lindex; i>=0; i-- ) { if ( vdep0.value(i)>0 ) { double a1=dep0.value(i); if ( a10 ) { if ( rindex==1 ) { logger.log(Level.FINE, "ensureMono removes all points, assume it's monotonic decreasing" ); return mds; } logger.log(Level.FINE, "ensureMono removes {0} points", nrm); int[] idx= new int[rindex-lindex]; System.arraycopy( rback, lindex, idx, 0, ( rindex-lindex ) ); mds.putProperty( QDataSet.DEPEND_0, null ); MutablePropertyDataSet dep0copy; if ( mds instanceof ArrayDataSet ) { Class c= ((ArrayDataSet)mds).getComponentType(); mds= ArrayDataSet.copy( c, new SortDataSet( mds, Ops.dataset(idx) ) ); Class depclass= ((ArrayDataSet)dep0).getComponentType(); dep0copy= ArrayDataSet.copy( depclass, new SortDataSet( dep0, Ops.dataset(idx) ) ); } else if ( mds instanceof BufferDataSet ) { Object c= ((BufferDataSet)mds).getType(); mds= BufferDataSet.copy( c, new SortDataSet( mds, Ops.dataset(idx) ) ); Object depclass= ((BufferDataSet)dep0).getType(); dep0copy= BufferDataSet.copy( depclass, new SortDataSet( dep0, Ops.dataset(idx) ) ); } else { throw new IllegalArgumentException("dataset must be ArrayDataSet or BufferDataSet"); } dep0copy.putProperty( QDataSet.MONOTONIC, Boolean.TRUE ); mds.putProperty( QDataSet.DEPEND_0, dep0copy ); } return mds; } /** * element-wise sin. * @param ds * @return */ public static QDataSet sin(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.sin(d1); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "sin" ) ); return result; } public static double sin( double ds ) { return Math.sin( ds ); } public static QDataSet sin( Object ds ) { return sin( dataset(ds) ); } /** * element-wise arcsin. * @param ds * @return */ public static QDataSet asin(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.asin(d1); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "asin" ) ); return result; } public static double asin( double ds ) { return Math.asin( ds ); } public static QDataSet asin( Object ds ) { return asin( dataset(ds) ); } /** * element-wise cos. * @param ds * @return */ public static QDataSet cos(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.cos(d1); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "cos" ) ); return result; } public static double cos( double ds ) { return Math.cos( ds ); } public static QDataSet cos( Object ds ) { return cos( dataset(ds) ); } /** * element-wise arccos. * @param ds * @return */ public static QDataSet acos(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double d1) { return Math.acos(d1); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "acos" ) ); return result; } public static double acos( double ds ) { return Math.acos( ds ); } public static QDataSet acos( Object ds ) { return acos( dataset(ds) ); } /** * element-wise tan. * @param ds * @return */ public static QDataSet tan(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.tan(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "tan" ) ); return result; } public static double tan( double ds ) { return Math.tan( ds ); } public static QDataSet tan( Object ds ) { return tan( dataset(ds) ); } /** * element-wise atan. * @param ds * @return */ public static QDataSet atan(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.atan(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "atan" ) ); return result; } public static double atan( double ds ) { return Math.atan( ds ); } public static QDataSet atan( Object ds ) { return atan( dataset(ds) ); } /** * element-wise atan2, 4-quadrant atan. Note different languages have different argument order. * Microsoft office uses atan2(x,y); IDL uses atan(y,x); Matlab uses atan2(y,x); and * NumPy uses arctan2(y,x). * @param y the y values * @param x the x values * @return angles between -PI and PI */ public static QDataSet atan2(QDataSet y, QDataSet x) { MutablePropertyDataSet result= applyBinaryOp(y, x, new BinaryOp() { @Override public double op(double y, double x) { return Math.atan2(y, x); } }); result.putProperty(QDataSet.LABEL, maybeLabelBinaryOp(y,x, "atan2" ) ); return result; } public static double atan2( double y, double x ) { return Math.atan2( y, x ); } public static QDataSet atan2( Object dsy, Object dsx ) { return atan2( dataset(dsy), dataset(dsx) ); } /** * element-wise cosh. * @param ds * @return */ public static QDataSet cosh(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.cosh(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "cosh" ) ); return result; } public static double cosh( double ds ) { return Math.cosh( ds ); } public static QDataSet cosh( Object ds ) { return cosh( dataset(ds) ); } /** * element-wise sinh. * @param ds * @return */ public static QDataSet sinh(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.sinh(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "sinh" ) ); return result; } public static double sinh( double ds ) { return Math.sinh( ds ); } public static QDataSet sinh( Object ds ) { return sinh( dataset(ds) ); } /** * element-wise tanh. * @param ds * @return */ public static QDataSet tanh(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.tanh(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "tanh" ) ); return result; } public static double tanh( double ds ) { return Math.tanh( ds ); } public static QDataSet tanh( Object ds ) { return tanh( dataset(ds) ); } /** * Returns ex -1. Note that for values of * x near 0, the exact sum of * expm1(x) + 1 is much closer to the true * result of ex than exp(x). * * @param ds * @return */ public static QDataSet expm1(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double a) { return Math.expm1(a); } }); result.putProperty(QDataSet.LABEL, maybeLabelUnaryOp(result, "expm1" ) ); return result; } public static double expm1( double ds ) { return Math.expm1( ds ); } public static QDataSet expm1( Object ds ) { return expm1( dataset(ds) ); } /** scalar math functions http://sourceforge.net/p/autoplot/bugs/1052/ */ /** * return the length of each index of a n-D array. In Java these are * arrays of arrays, and no test is made to verify that the array is really * a qube. This was introduced when it appeared that Python/jpype was * producing arrays without the getClass method. * * For example, if we have an array of 3 arrays, each having 5 elements, * then [ 3,5 ] is returned. * @param arg0 an array, or array of arrays, or array of array of arrays, etc. * @return the n dimensions of each index of the array. */ public static int[] getQubeDimsForArray( Object arg0 ) { List qqube= new ArrayList( ); qqube.add( Array.getLength(arg0) ); if ( qqube.get(0)>0 ) { Object slice= Array.get(arg0, 0); try { while ( slice.getClass().isArray() ) { qqube.add( Array.getLength(slice) ); slice= Array.get( slice, 0 ); } } catch ( Exception ex ) { Array.getLength(slice); } } int[] qube= new int[qqube.size()]; for ( int i=0; i *
  • int, float, double, etc to Rank 0 datasets *
  • List<Number> to Rank 1 datasets. *
  • Java arrays of Number to Rank 1-4 qubes datasets *
  • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00") *
  • Datums to rank 0 datasets *
  • DatumRanges to rank 1 bins * * @param arg0 null,QDataSet,Number,Datum,DatumRange,String,List,or array. * @throws IllegalArgumentException if the argument cannot be parsed or converted. * @return QDataSet */ public static QDataSet dataset( Object arg0 ) { if ( arg0==null ) { // there was a similar test in the Python code. return null; } else if ( arg0 instanceof QDataSet ) { return (QDataSet)arg0; } else if ( arg0 instanceof Number ) { return DataSetUtil.asDataSet( ((Number)arg0).doubleValue() ); } else if ( arg0 instanceof Datum ) { return DataSetUtil.asDataSet( (Datum)arg0 ); } else if ( arg0 instanceof Boolean ) { return DataSetUtil.asDataSet( ((Boolean)arg0) ? 1.0 : 0.0 ); } else if ( arg0 instanceof DatumRange ) { return DataSetUtil.asDataSet( (DatumRange)arg0 ); } else if ( arg0 instanceof String ) { String sarg= (String)arg0; try { return DataSetUtil.asDataSet( DatumUtil.parse(sarg) ); //TODO: someone is going to want lookupUnits that will allocate new units. } catch (ParseException ex) { try { return DataSetUtil.asDataSet( Units.us2000.parse(sarg) );// rfe 543: ISO8601 support for time zones. Back off feature. } catch ( ParseException ex2 ) { try { DatumRange dr= DatumRangeUtil.parseISO8601Range(sarg); if ( dr==null ) { EnumerationUnits eu= EnumerationUnits.create("default"); Datum d= eu.createDatum(sarg); return DataSetUtil.asDataSet(d); } else { return DataSetUtil.asDataSet(dr); } } catch ( ParseException ex1 ) { throw new IllegalArgumentException( "unable to parse string: "+sarg, ex1 ); //TODO: does this happen? } } } } else if ( arg0 instanceof List ) { List p= (List)arg0; double[] j= new double[ p.size() ]; Units u= null; for ( int i=0; i") ) { throw new IllegalArgumentException("Ops.dataset is unable to coerce \""+ sarg0.substring(1,sarg0.length()-1) + "\" to QDataSet"); } else { throw new IllegalArgumentException("Ops.dataset is unable to coerce "+arg0+" to QDataSet"); } } } /** * coerce Java objects like arrays Lists and scalars into a QDataSet. * This is introduced to mirror the useful Jython dataset command. This is a nasty business that * is surely going to cause all sorts of problems, so we should do it all in one place. * See http://jfaden.net:8080/hudson/job/autoplot-test029/ * This supports:
      *
    • int, float, double, etc to Rank 0 datasets *
    • List<Number> to Rank 1 datasets. *
    • Java arrays of Number to Rank 1-4 qubes datasets *
    • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00") *
    • Datums to rank 0 datasets *
    • DatumRanges to rank 1 bins *
    * @param arg0 null,QDataSet,Number,Datum,DatumRange,String,List,or array. * @param u units providing context * @throws IllegalArgumentException if the argument cannot be parsed or converted. * @return QDataSet * @see JythonOps#dataset(PyObject, org.das2.datum.Units) */ public static QDataSet dataset( Object arg0, Units u ) { if ( arg0==null ) { // there was a similar test in the Python code. return null; } else if ( arg0 instanceof QDataSet ) { return (QDataSet)arg0; } else if ( arg0 instanceof Number ) { return DataSetUtil.asDataSet( u.createDatum( ((Number)arg0).doubleValue() ) ); } else if ( arg0 instanceof Datum ) { return DataSetUtil.asDataSet( (Datum)arg0 ); } else if ( arg0 instanceof DatumRange ) { return DataSetUtil.asDataSet( (DatumRange)arg0 ); } else if ( arg0 instanceof String ) { String sarg= (String)arg0; try { return DataSetUtil.asDataSet( u.parse(sarg) ); //TODO: someone is going to want lookupUnits that will allocate new units. } catch (ParseException ex) { try { return DataSetUtil.asDataSet(TimeUtil.create(sarg)); } catch ( ParseException ex2 ) { try { DatumRange dr= DatumRangeUtil.parseISO8601Range(sarg); if ( dr==null ) { throw new IllegalArgumentException( "unable to parse string: "+sarg ); // legacy. It should throw ParseException now. } else { return DataSetUtil.asDataSet(dr); } } catch ( ParseException ex1 ) { throw new IllegalArgumentException( "unable to parse string: "+sarg, ex1 ); } } } } else if ( arg0 instanceof List ) { List p= (List)arg0; double[] j= new double[ p.size() ]; for ( int i=0; i qqube= new ArrayList( ); qqube.add( Array.getLength(arg0) ); if ( qqube.get(0)>0 ) { Object slice= Array.get(arg0, 0); while ( slice.getClass().isArray() ) { qqube.add( Array.getLength(slice) ); slice= Array.get( slice, 0 ); } } int[] qube= new int[qqube.size()]; for ( int i=0; i") ) { throw new IllegalArgumentException("Ops.dataset is unable to coerce \""+ sarg0.substring(1,sarg0.length()-1) + "\" to QDataSet"); } else { throw new IllegalArgumentException("Ops.dataset is unable to coerce "+arg0+" to QDataSet"); } } } /** * coerce Java objects like numbers and strings into a Datum. * This is introduced to mirror the useful Jython dataset command. This is a nasty business that * is surely going to cause all sorts of problems, so we should do it all in one place. * See http://jfaden.net:8080/hudson/job/autoplot-test029/ * This supports:
      *
    • int, float, double, etc to Rank 0 datasets *
    • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00") *
    • rank 0 datasets *
    * @param arg0 null,QDataSet,Number,Datum, or String. * @throws IllegalArgumentException if the argument cannot be parsed or converted. * @return Datum */ public static Datum datum( Object arg0 ) { if ( arg0==null ) { // there was a similar test in the Python code. return null; } else if ( arg0 instanceof QDataSet ) { return DataSetUtil.asDatum((QDataSet)arg0); } else if ( arg0 instanceof Number ) { return Datum.create( ((Number)arg0).doubleValue() ); } else if ( arg0 instanceof Datum ) { return (Datum)arg0; } else if ( arg0 instanceof String ) { String sarg= (String)arg0; try { return DatumUtil.parse(sarg); } catch (ParseException ex) { try { return TimeUtil.create(sarg); } catch ( ParseException ex2 ) { throw new IllegalArgumentException( "unable to parse string: "+sarg, ex2 ); } } } else { throw new IllegalArgumentException("unable to coerce "+arg0+" to Datum"); } } /** * coerce Java objects like arrays and strings into a DatumRange. * This is introduced to mirror the useful Jython dataset command. This is a nasty business that * is surely going to cause all sorts of problems, so we should do it all in one place. * See http://jfaden.net:8080/hudson/job/autoplot-test029/ * This supports:
      *
    • 2-element rank 1 QDataSet *
    • Strings like ("5 to 15 s" or "2014-01-01") *
    • 2-element arrays and lists *
    * @param arg0 null, QDataSet, String, array or List. * @throws IllegalArgumentException if the argument cannot be parsed or converted. * @return DatumRange */ public static DatumRange datumRange( Object arg0 ) { if ( arg0==null ) { // there was a similar test in the Python code. return null; } else if ( arg0 instanceof QDataSet ) { return DataSetUtil.asDatumRange((QDataSet)arg0); } else if ( arg0 instanceof DatumRange ) { return (DatumRange)arg0; } else if ( arg0 instanceof String ) { String sarg= (String)arg0; try { return DatumRangeUtil.parseDatumRange(sarg); } catch ( ParseException ex ) { throw new IllegalArgumentException( "unable to parse string as DatumRange: "+sarg ); } } else if ( arg0 instanceof List ) { List p= (List)arg0; double[] j= new double[ p.size() ]; if ( j.length!=2 ) throw new IllegalArgumentException("list should have two elements when creating DatumRange: "+arg0 ); Units u= null; for ( int i=0; i") ) { throw new IllegalArgumentException("Ops.dataset is unable to coerce \""+ sarg0.substring(1,sarg0.length()-1) + "\" to QDataSet"); } else { throw new IllegalArgumentException("Ops.dataset is unable to coerce "+arg0+" to QDataSet"); } } } /** * convert the data to radians by multiplying each element by PI/180. * This does not check the units of the data, but a future version might. * @param ds * @return */ public static QDataSet toRadians(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double y) { return y * Math.PI / 180.; } }); result.putProperty( QDataSet.UNITS, Units.radians ); return result; } public static QDataSet toRadians( Object ds ) { return toRadians( dataset(ds) ); } /** * convert the data to degrees by multiplying each element by 180/PI. * This does not check the units of the data, but a future version might. * @param ds * @return */ public static QDataSet toDegrees(QDataSet ds) { MutablePropertyDataSet result= applyUnaryOp(ds, new UnaryOp() { @Override public double op(double y) { return y * 180 / Math.PI; } }); result.putProperty( QDataSet.UNITS, Units.degrees ); return result; } public static QDataSet toDegrees( Object ds ) { return toDegrees( dataset(ds) ); } /** * return the index of the maximum value. This is to avoid inefficient * code like "where(slice.eq( max(slice) ))[0]" * @param ds rank 1 dataset * @return the index of the maximum value, or -1 if the data is all fill. */ public static int imax( QDataSet ds ) { if ( ds.rank()!=1 ) throw new IllegalArgumentException("rank 1 only"); QDataSet wds= DataSetUtil.weightsDataSet(ds); int result= -1; double v= Double.NEGATIVE_INFINITY; for ( int i=0; i0 ) { double d= ds.value(i); if ( d>v ) { result= i; v= d; } } } return result; } public static int imax( Object ds ) { return imax( dataset(ds) ); } /** * return the index of the minimum value. This is to avoid inefficient * code like "where(slice.eq( min(slice) ))[0]" * @param ds rank 1 dataset * @return the index of the maximum value, or -1 if the data is all fill. */ public static int imin( QDataSet ds ) { if ( ds.rank()!=1 ) throw new IllegalArgumentException("rank 1 only"); QDataSet wds= DataSetUtil.weightsDataSet(ds); int result= -1; double v= Double.POSITIVE_INFINITY; for ( int i=0; i0 ) { double d= ds.value(i); if ( d * QDataSet r= Ops.subset( ds, Ops.where( Ops.gt( ds, 1 ) ) ) * * will return the subset of ds where ds is greater than 1. * @param ds rank N array, N > 0. * @param w rank 1 dataset of length l indexing a rank 1 array, or rank 2 ds[l,N] indexing a rank N array. * @return rank 1 indeces. * @see #applyIndex(org.das2.qds.QDataSet, org.das2.qds.QDataSet) applyIndex, which does the same thing. */ public static QDataSet subset( QDataSet ds, QDataSet w ) { return DataSetOps.applyIndex( ds, 0, w, true); } /** * returns a dataset containing the indeces of where the dataset is non-zero. * For a rank 1 dataset, returns a rank 1 dataset with indeces for the values. * For a higher rank dataset, returns a rank 2 qube dataset with ds.rank() * elements in the first dimension. Note when the dataset is all zeros (false), * the result is a zero-length array, as opposed to IDL which would return * a -1 scalar. * * Note fill values are not included in the list, so it is not necessary that * where(A).length + where(not A).length != where( A.or(not(A) ).length * * Note this is different from the SciPy "where" and similar to Matlab "find." * * @param ds of any rank M, M>0. * @return a rank 1 or rank 2 dataset with N by M elements, where N is the number * of non-zero elements found. * @see #putValues(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet where(QDataSet ds) { if ( ds==null ) { throw new NullPointerException("dataset is null"); } if ( ds.rank()<1 ) { throw new IllegalArgumentException("dataset is rank 0"); } if ( ds.rank()==1 && DataSetAnnotations.VALUE_0.equals(DataSetAnnotations.getInstance().getAnnotation(ds,DataSetAnnotations.ANNOTATION_ZERO_COUNT)) && DataSetAnnotations.VALUE_0.equals(DataSetAnnotations.getInstance().getAnnotation(ds,DataSetAnnotations.ANNOTATION_INVALID_COUNT)) ) { return Ops.indgen(ds.length()); } DataSetBuilder builder; QubeDataSetIterator iter = new QubeDataSetIterator(ds); QDataSet wds= DataSetUtil.weightsDataSet(ds); int blocksize= Math.max( 100, ds.length() / 4 ); if (ds.rank() == 1) { builder = new DataSetBuilder( 1, blocksize ); while (iter.hasNext()) { iter.next(); if ( iter.getValue(wds)> 0 && iter.getValue(ds) != 0.) { builder.putValue(-1, iter.index(0)); builder.nextRecord(); } } builder.putProperty(QDataSet.MONOTONIC, Boolean.TRUE); if ( builder.getLength()==ds.length() ) { DataSetAnnotations.getInstance().putAnnotation(ds,DataSetAnnotations.ANNOTATION_INVALID_COUNT, DataSetAnnotations.VALUE_0 ); DataSetAnnotations.getInstance().putAnnotation(ds,DataSetAnnotations.ANNOTATION_ZERO_COUNT, DataSetAnnotations.VALUE_0 ); } builder.putProperty( QDataSet.VALID_MAX, ds.length() ); } else { builder = new DataSetBuilder( 2, blocksize, ds.rank() ); while (iter.hasNext()) { iter.next(); if ( iter.getValue(wds)> 0 && iter.getValue(ds) != 0.) { builder.putValue(-1, 0, iter.index(0)); if (ds.rank() > 1) { builder.putValue(-1, 1, iter.index(1)); } if (ds.rank() > 2) { builder.putValue(-1, 2, iter.index(2)); } if (ds.rank() > 3) { builder.putValue(-1, 3, iter.index(3)); } builder.nextRecord(); } } switch (ds.rank()) { case 2: builder.putProperty(QDataSet.DEPEND_1, labelsDataset(new String[]{"dim0", "dim1"})); break; case 3: builder.putProperty(QDataSet.DEPEND_1, labelsDataset(new String[]{"dim0", "dim1", "dim2"})); break; case 4: builder.putProperty(QDataSet.DEPEND_1, labelsDataset(new String[]{"dim0", "dim1", "dim2", "dim4"})); break; default: break; } } builder.putProperty( QDataSet.CADENCE, DataSetUtil.asDataSet(1.0) ); builder.putProperty( QDataSet.FORMAT, "%d" ); return builder.getDataSet(); } public static QDataSet where( Object ds ) { return where( dataset(ds) ); } /** * return non-zero where the data in ds are within the bounds. In Jython, *
         *print within( [0,1,2,3,4], '2 to 4' ) --> [ 0,0,1,1,0 ]
         *print within( ttag, 'orbit:rbspa-pp:172' )
         *
    * * Note, before March 2, 2015, this would incorrectly return the where of the result. * @param ds rank N dataset where N > 0 * @param bounds a rank 1 bounding box. * @return rank N dataset containing non-zero where the condition is true. * @see #without(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #binsWithin(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet within( QDataSet ds, QDataSet bounds ) { final UnitsConverter uc= SemanticOps.getLooseUnitsConverter( bounds, ds ); final double min= uc.convert(bounds.value(0)); final double max= uc.convert(bounds.value(1)); return applyUnaryOp( ds, new UnaryOp() { @Override public double op(double d1) { return ( d1 >= min && d1 < max ) ? 1.0 : 0.0; } }); } /** * return non-zero where the data in ds are within the bounds. In Jython, *
         *print within( [0,1,2,3,4], '2 to 4' ) --> [ 0,0,1,1,0 ]
         *print within( ttag, 'orbit:rbspa-pp:172' )
         *
    * * Note, before March 2, 2015, this would incorrectly return the where of the result. * @param ds object which can be converted to rank N dataset where N > 0 * @param bounds a rank 1 bounding box, DatumRange, or two-element array. * @return rank N dataset containing non-zero where the condition is true. * @see #without(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #where(java.lang.Object) where, which is often used with this. * @see #binsWithin(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet within( Object ds, Object bounds ) { return within( dataset(ds), dataset( datumRange( bounds ) ) ); } /** * return non-zero where the bins of ds are within the bounds. * * @param ds rank 2 bins dataset * @param bounds a rank 1 bounding box. * @return rank 1 dataset containing non-zero where the condition is true. * @see #within(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet binsWithin( QDataSet ds, QDataSet bounds ) { return and( ge( slice1(ds,1), bounds.slice(0) ), lt( slice1(ds,0), bounds.slice(1) ) ); } /** * return non-zero where the data in ds are outside of the bounds. In Jython, *
         *print without( [0,1,2,3,4], '2 to 4' ) --> [ 1,1,0,0,1 ]
         *print without( ttag, 'orbit:rbspa-pp:172' )
         *
    * Note if bounds contain fill, then everything is fill. * * @param ds rank N dataset where N > 0 * @param bounds a rank 1 bounding box. * @return rank N dataset containing non-zero where the condition is true. * @see #within(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet without( QDataSet ds, QDataSet bounds ) { return or( lt( ds, bounds.slice(0) ), ge( ds, bounds.slice(1) ) ); } /** * return non-zero where the data in ds are outside of the bounds. In Jython, *
         *print without( [0,1,2,3,4], '2 to 4' ) --> [ 1,1,0,0,1 ]
         *print without( ttag, 'orbit:rbspa-pp:172' )
         *
    * Note if bounds contain fill, then everything is fill. * @param ds rank N dataset where N > 0 * @param bounds a rank 1 bounding box. * @return rank N dataset containing non-zero where the condition is true. * @see #within(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet without( Object ds, Object bounds ) { QDataSet boundsDs= dataset( datumRange( bounds ) ); return or( lt( ds, boundsDs.slice(0) ), ge( ds, boundsDs.slice(1) ) ); } /** * return non-zero where the bins of ds are outside of the bounds. * @param ds rank 2 bins dataset * @param bounds a rank 1 bounding box. * @return rank 1 dataset containing non-zero where the condition is true. * @see #binsWithin(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet binsWithout( QDataSet ds, QDataSet bounds ) { return or( lt( slice1(ds,0), bounds.slice(0) ), ge( slice1(ds,1), bounds.slice(1) ) ); } /** * returns a rank 1 dataset of indeces that sort the rank 1 dataset ds. * This is not the dataset sorted. For example: *
         *ds= randn(2000)
         *s= sort( ds )
         *dsSorted= ds[s]
         *
    * Note the result will have the property MONOTONIC==Boolean.TRUE if * the data was sorted already. * @param ds rank 1 dataset * @return rank 1 dataset of indeces that sort the input dataset. * @see #shuffle(org.das2.qds.QDataSet) */ public static QDataSet sort(QDataSet ds) { return DataSetOps.sort(ds); } public static QDataSet sort(Object ds) { return DataSetOps.sort(dataset(ds)); } /** * Return the unique indeces from the rank 1 dataset. If the * set is not monotonic, then return unique indeces from the monotonic * portions. * * @param ds rank 1 dataset, sorted, or mostly sorted. * @return the element indeces. * @see #sort(java.lang.Object) * @see #uniq(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #uniqValues(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet uniq( QDataSet ds ) { return uniq( ds, null ); } /** * return a rank 1 hashcodes of each record the dataset, with one hashcodes value for each record. The * value of hashcodes should repeat if the record repeats. * * NOTE: This is under-implemented and should not be used * without understanding the code. * * @param ds dataset with rank greater than 0. * @return rank 1 dataset. */ public static QDataSet hashcodes( QDataSet ds ) { if ( ds.rank()==0 ) throw new IllegalArgumentException("rank 0 not supported"); if ( ds.rank()==1 ) return ds; IDataSet result= IDataSet.createRank1(ds.length()); for ( int i=0; i0. ) { hash= hash * 31 + Double.valueOf(it.getValue(slice)).hashCode(); } else { hash= hash * 31; } } result.putValue( i,hash ); } return result; } /** * Return the unique indeces from the rank 1 dataset, using sort to resort the indeces. * If sort is null, then * the dataset is assumed to be monotonic, and only repeating values are * coalesced. If sort is non-null, then it is the result of the function * "sort" and should be a rank 1 list of indeces that sort the data. * @param ds rank 1 dataset, sorted, or mostly sorted. * @param sort null, or the rank 1 dataset of indeces * @return the indeces of the unique elements. * @see #uniqValues uniqValues, which returns the values. */ public static QDataSet uniq( QDataSet ds, QDataSet sort ) { if ( ds.rank()>1 ) throw new IllegalArgumentException("ds.rank()>1" ); if ( sort!=null && sort.rank()>1 ) throw new IllegalArgumentException("sort.rank()>1" ); DataSetBuilder builder= new DataSetBuilder(1,100); double d; int didx; if ( sort==null ) { DataSetIterator it= new QubeDataSetIterator(ds); if ( !it.hasNext() ) { return builder.getDataSet(); } it.next(); d= it.getValue(ds); didx= it.index(0); while ( it.hasNext() ) { it.next(); double d1= it.getValue(ds); if ( d!=d1 ) { builder.putValue(-1, didx ); builder.nextRecord(); d= d1; } didx= it.index(0); } } else { DataSetIterator it= new QubeDataSetIterator(sort); if ( !it.hasNext() ) { return builder.getDataSet(); } it.next(); int i; didx= (int) it.getValue(sort); d= ds.value(didx); while ( it.hasNext() ) { it.next(); i= (int) it.getValue(sort); double d1= ds.value( i ); if ( d!=d1 ) { builder.putValue(-1, didx ); builder.nextRecord(); d= d1; } didx= i; } } builder.putValue(-1, didx ); builder.nextRecord(); return builder.getDataSet(); } /** * return the unique elements from the dataset. If sort is null, then * the dataset is assumed to be monotonic, and only repeating values are * coalesced. If sort is non-null, then it is the result of the function * "sort" and should be a rank 1 list of indeces that sort the data. * * renamed uniqValues from uniq to avoid confusion with the IDL command. * * This needs example code and should not be used for now. See VirboAutoplot/src/scripts/test/testUniq.jy * @see #uniq uniq, which returns the indeces. * @param ds rank 1 dataset, sorted, or mostly sorted. * @param sort null, or the rank 1 dataset of indeces * @return the subset of the data which is uniq. * @see #uniq(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet uniqValues( QDataSet ds, QDataSet sort ) { QDataSet idx= uniq( ds, sort ); return DataSetOps.applyIndex( ds, 0, idx, true ); } /** * retrieve a property from the dataset. This was introduced for use * in the Data Mash Up tool. * @param ds the dataset * @param name the property name * @return the property or null (None) if the dataset doesn't have the property. */ public static Object getProperty( QDataSet ds, String name ) { return ds.property(name); } /** * converts types often seen in Jython and Java codes to the correct type. For * example, *
    ds= putProperty( [1400,2800], 'UNITS', 'seconds since 2012-01-01')
    * will convert the string 'seconds since 2012-01-01' into a Unit before assigning * it to the dataset. * * @param ds the object which can be interpreted as a dataset, such as a number or array of numbers. * @param name the property name * @param value the property value, which can converted to the proper type. * @return the dataset, possibly converted to a mutable dataset. */ public static MutablePropertyDataSet putProperty( Object ds, String name, Object value ) { return putProperty( dataset(ds), name, value ); } /** * converts types often seen in Jython and Java codes to the correct type. For * example, ds= putProperty( ds, 'UNITS', 'seconds since 2012-01-01'). The dataset * may be copied to make it mutable. * * @param ds the dataset to which the property is to be set. * @param name the property name * @param value the property value, which can converted to the proper type. * @return the dataset, possibly converted to a mutable dataset. */ public static MutablePropertyDataSet putProperty( QDataSet ds, String name, Object value ) { MutablePropertyDataSet mds; if ( !( ds instanceof MutablePropertyDataSet ) ) { mds= ArrayDataSet.maybeCopy(ds); // https://sourceforge.net/p/autoplot/bugs/1357/ should this be DataSetWrapper.wrap? } else { if ( ((MutablePropertyDataSet)ds).isImmutable() ) { mds= ArrayDataSet.copy(ds); } else { mds= (MutablePropertyDataSet)ds; } } if ( value!=null && ( value.equals("null") || value.equals("None") || value.equals("Null") ) ) { if ( !"String".equals(DataSetUtil.getPropertyType(name)) ) { if ( !( name.equals(QDataSet.TITLE) || name.equals(QDataSet.LABEL) ) ) { value= null; } } } if ( value==null ) { mds.putProperty( name, null ); return mds; } if ( value==ds && !name.equals("DEPEND_0") ) { throw new IllegalArgumentException("a dataset cannot have itself as a property"); } String type= DataSetUtil.getPropertyType(name); if ( type==null ) { logger.log(Level.FINE, "unrecognized property {0}...", name); mds.putProperty( name, value ); } else { switch (type) { case DataSetUtil.PROPERTY_TYPE_QDATASET: QDataSet arg= Ops.dataset(value); if ( name.equals("DEPEND_0") ) { if ( arg.rank()>0 && mds.rank()>0 && arg.length()!=mds.length() ) { throw new IllegalArgumentException("DEPEND_0 must be the same length as dataset"); } } mds.putProperty(name, arg); break; case DataSetUtil.PROPERTY_TYPE_UNITS: if ( value instanceof String ) { String svalue= (String)value; value= Units.lookupUnits(svalue); } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_BOOLEAN: if ( value instanceof String ) { String svalue= (String)value; value= Boolean.valueOf(svalue); } else if ( value instanceof Number ) { value= !((Number)value).equals(0); } else if ( value instanceof QDataSet ) { value= !(((QDataSet)value).value()==0); } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_NUMBER: if ( value instanceof String ) { String svalue= (String)value; Units u= (Units)mds.property(QDataSet.UNITS); if ( u!=null ) { try { value= u.parse(svalue).doubleValue(u); } catch (ParseException ex) { try { value= Integer.valueOf(svalue); } catch ( NumberFormatException ex2 ) { throw new IllegalArgumentException(ex); } } } else { if ( svalue.contains(".") || svalue.contains("e") || svalue.contains("E") ) { value= Double.valueOf(svalue); } else { value= Integer.valueOf(svalue); } } } else if ( value instanceof QDataSet ) { QDataSet qvalue= (QDataSet)value; if ( qvalue.rank()>1 ) throw new IllegalArgumentException("rank 0 dataset needed for putProperty"); value= qvalue.value(); } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_CACHETAG: if ( value instanceof String ) { String svalue= (String)value; int i= svalue.indexOf("@"); try { DatumRange tr= DatumRangeUtil.parseTimeRange( svalue.substring(0,i) ); CacheTag r; if ( i==-1 ) { value= new CacheTag( tr, null ); } else if ( svalue.substring(i+1).trim().equals("intrinsic") ) { value= new CacheTag( tr, null ); } else { Datum res= Units.seconds.parse(svalue.substring(i+1)); value= new CacheTag( tr, res ); } } catch ( ParseException ex ) { throw new IllegalArgumentException(ex); } } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_MAP: if ( !( value instanceof Map ) ) { try { String json= value.toString(); JSONObject obj= new JSONObject(json); Map result= new HashMap<>(); Iterator i= obj.keys(); while ( i.hasNext() ) { String k= String.valueOf( i.next() ); result.put( k, obj.get(k) ); } mds.putProperty( name, result ); } catch (JSONException ex) { logger.log(Level.SEVERE, "type is not supported for PROPERTY TYPE MAP: "+value, ex); } } else { mds.putProperty( name, value); } break; default: mds.putProperty( name, value); break; } } return mds; } /** * convert the object into the type needed for the property. * @param context the dataset to which we are assigning the value. * @param name the property name * @param value the value * @return the correct value. * @see org.autoplot.jythonsupport.PyQDataSet#convertPropertyValue */ public static Object convertPropertyValue( QDataSet context, String name, Object value ) { if ( value==null ) return value; String type= DataSetUtil.getPropertyType(name); if ( type==null ) { throw new IllegalArgumentException("unrecognized property: "+name ); } else { Units u= context==null ? Units.dimensionless : (Units)context.property(QDataSet.UNITS); switch (type) { case DataSetUtil.PROPERTY_TYPE_QDATASET: return Ops.dataset(value); case DataSetUtil.PROPERTY_TYPE_UNITS: if ( value instanceof String ) { String svalue= (String)value; value= Units.lookupUnits(svalue); return value; } else if ( value instanceof Units ) { return value; } else { throw new IllegalArgumentException("cannot convert to value for "+name+": "+value); } case DataSetUtil.PROPERTY_TYPE_BOOLEAN: if ( value instanceof String ) { String svalue= (String)value; value= Boolean.valueOf(svalue); return value; } else if ( value instanceof Number ) { value= !((Number)value).equals(0); return value; } else if ( value instanceof QDataSet ) { value= !(((QDataSet)value).value()==0); return value; } else if (value instanceof Boolean ) { return value; } else { throw new IllegalArgumentException("cannot convert to value for "+name+": "+value); } case DataSetUtil.PROPERTY_TYPE_NUMBER: if ( value instanceof String ) { String svalue= (String)value; if ( u!=null ) { try { value= u.parse(svalue).doubleValue(u); } catch (ParseException ex) { try { value= Integer.valueOf(svalue); } catch ( NumberFormatException ex2 ) { throw new IllegalArgumentException(ex); } } } else { if ( svalue.contains(".") || svalue.contains("e") || svalue.contains("E") ) { value= Double.valueOf(svalue); } else { value= Integer.valueOf(svalue); } } return value; } else if ( value instanceof QDataSet ) { QDataSet qvalue= (QDataSet)value; if ( qvalue.rank()>1 ) throw new IllegalArgumentException("rank 0 dataset needed for property of type Number: "+name); value= datum(qvalue).doubleValue(u); return value; } else if ( value instanceof Datum ) { value= ((Datum)value).doubleValue(u); return value; } else if ( value instanceof Number ) { return value; } case DataSetUtil.PROPERTY_TYPE_CACHETAG: if ( value instanceof String ) { String svalue= (String)value; int i= svalue.indexOf("@"); try { DatumRange tr= DatumRangeUtil.parseTimeRange( svalue.substring(0,i) ); CacheTag r; if ( i==-1 ) { value= new CacheTag( tr, null ); } else if ( svalue.substring(i+1).trim().equals("intrinsic") ) { value= new CacheTag( tr, null ); } else { Datum res= Units.seconds.parse(svalue.substring(i+1)); value= new CacheTag( tr, res ); } return value; } catch ( ParseException ex ) { throw new IllegalArgumentException(ex); } } else if ( value instanceof CacheTag ) { return value; } else { throw new IllegalArgumentException("cannot convert to value for "+name+": "+value); } case DataSetUtil.PROPERTY_TYPE_MAP: if ( !( value instanceof Map ) ) { try { String json= value.toString(); JSONObject obj= new JSONObject(json); Map result= new HashMap<>(); Iterator i= obj.keys(); while ( i.hasNext() ) { String k= String.valueOf( i.next() ); result.put( k, obj.get(k) ); } return result; } catch (JSONException ex) { throw new IllegalArgumentException("cannot convert to value for "+name+": "+value); } } else { return value; } case DataSetUtil.PROPERTY_TYPE_STRING: return value.toString(); default: return value; } } } /** * Like putProperty, but this inserts the value at the index. This * was introduced to make it easier to work with bundles. This * converts types often seen in Jython and Java codes to the correct type. For * example, {@code bds= putProperty( bds, 'UNITS', 0, 'seconds since 2012-01-01')}. * The dataset may be copied to make it mutable. * * @param ds the dataset to which the property is to be set. * @param name the property name * @param index the property index * @param value the property value, which can converted to the proper type. * @return the dataset, possibly converted to a mutable dataset. */ public static MutablePropertyDataSet putIndexedProperty( QDataSet ds, String name, int index, Object value ) { MutablePropertyDataSet mds; if ( !( ds instanceof MutablePropertyDataSet ) ) { mds= ArrayDataSet.maybeCopy(ds); } else { if ( ((MutablePropertyDataSet)ds).isImmutable() ) { mds= ArrayDataSet.copy(ds); } else { mds= (MutablePropertyDataSet)ds; } } if ( value!=null && ( value.equals("Null") || value.equals("None") ) ) { if ( !"String".equals(DataSetUtil.getPropertyType(name)) ) { if ( !( name.equals(QDataSet.TITLE) || name.equals(QDataSet.LABEL) ) ) { value= null; } } } if ( value==null ) { mds.putProperty( name, index, null ); return mds; } String type= DataSetUtil.getPropertyType(name); if ( type==null ) { logger.log(Level.FINE, "unrecognized property {0}...", name); mds.putProperty( name, value ); } else { switch (type) { case DataSetUtil.PROPERTY_TYPE_QDATASET: mds.putProperty(name, Ops.dataset(value)); break; case DataSetUtil.PROPERTY_TYPE_UNITS: if ( value instanceof String ) { String svalue= (String)value; value= Units.lookupUnits(svalue); } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_BOOLEAN: if ( value instanceof String ) { String svalue= (String)value; value= Boolean.valueOf(svalue); } else if ( value instanceof Number ) { value= !((Number)value).equals(0); } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_NUMBER: if ( value instanceof String ) { String svalue= (String)value; Units u= (Units)mds.property(QDataSet.UNITS); if ( u!=null ) { try { value= u.parse(svalue).doubleValue(u); } catch (ParseException ex) { try { value= Integer.valueOf(svalue); } catch ( NumberFormatException ex2 ) { throw new IllegalArgumentException(ex); } } } else { if ( svalue.contains(".") || svalue.contains("e") || svalue.contains("E") ) { value= Double.valueOf(svalue); } else { value= Integer.valueOf(svalue); } } } mds.putProperty( name, value); break; case DataSetUtil.PROPERTY_TYPE_CACHETAG: if ( value instanceof String ) { String svalue= (String)value; int i= svalue.indexOf("@"); try { DatumRange tr= DatumRangeUtil.parseTimeRange( svalue.substring(0,i) ); CacheTag r; if ( i==-1 ) { value= new CacheTag( tr, null ); } else if ( svalue.substring(i+1).trim().equals("intrinsic") ) { value= new CacheTag( tr, null ); } else { Datum res= Units.seconds.parse(svalue.substring(i+1)); value= new CacheTag( tr, res ); } } catch ( ParseException ex ) { throw new IllegalArgumentException(ex); } } mds.putProperty( name, index, value); break; default: mds.putProperty( name, index, value); break; } } return mds; } /** * Like putIndexedProperty, but manages the bundle for the client. This * was introduced to make it easier to work with bundles. This * converts types often seen in Jython and Java codes to the correct type. For * example, {@code ds= putBundleProperty( ds, 'UNITS', 0, 'seconds since 2012-01-01')}. * The dataset may be copied to make it mutable. If the bundle descriptor dataset * is not found, it is added, making the rank 2 dataset a bundle. * * @param ds the rank 1 or rank 2 bundle dataset to which the property is to be set. * @param name the property name * @param index the property index * @param value the property value, which can converted to the proper type. * @return the dataset, possibly converted to a mutable dataset. */ public static MutablePropertyDataSet putBundleProperty( QDataSet ds, String name, int index, Object value ) { int dim=ds.rank()-1; String bundleProp= "BUNDLE_"+dim; QDataSet bds= (QDataSet) ds.property(bundleProp); if ( bds==null ) { bds= SparseDataSet.createRank(2); } MutablePropertyDataSet wbds= putIndexedProperty( bds, name, index, value ); MutablePropertyDataSet mds= putProperty( ds, bundleProp, wbds ); return mds; } public static WritableDataSet putValues( Object ds, Object indeces, Object values ) { QDataSet qvalues= dataset(values); QDataSet qindeces= dataset(indeces); QDataSet qds= dataset(ds); return putValues( qds, qindeces, qvalues ); } /** * like putProperty, but this inserts values into the dataset. If the dataset * is not mutable, then this will make a copy of the data and return the copy. * * @param ds the rank 1 or greater dataset * @param indeces rank 1 indeces when ds is rank 1, or rank 2 [:,m] indeces for a rank m dataset. * @param value null for fill, or the rank 0 value or rank 1 values to assign. * @return the dataset with the indeces assigned new values. * @see #where(org.das2.qds.QDataSet) * @see #removeValues(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static WritableDataSet putValues( QDataSet ds, QDataSet indeces, QDataSet value ) { DataSetUtil.checkListOfIndeces(ds,indeces); WritableDataSet result; if ( ds instanceof WritableDataSet ) { WritableDataSet wds= (WritableDataSet)ds; if ( wds.isImmutable() ) { result= copy(wds); } else { result= wds; } } else { result= copy(ds); } // promote rank to match data, if necessary. if ( result.rank()>1 && indeces.rank()==1 ) { // allow rank 1 indeces to putValues in rank N>1 dataset (promoting rank). DataSetBuilder dsb= new DataSetBuilder(2,indeces.length()*result.length(0),result.rank()); Object[] iii= new Object[result.rank()]; for ( int i=0; i=vv.length() ) { iter.putValue( result, fill.doubleValue() ); } else { iter.putValue( result, vv.value(idx) ); } } result.putProperty(QDataSet.UNITS,vv.property(QDataSet.UNITS)); result.putProperty(QDataSet.FILL_VALUE,fill); return result; } /** * apply the indeces * @param vvo values to return, a rank 1, N-element dataset. * @param ds the indices. * @return data a dataset with the geometry of ds and the units of values. */ public static WritableDataSet applyIndex( Object vvo, QDataSet ds ) { QDataSet vv= dataset(vvo); QubeDataSetIterator iter= new QubeDataSetIterator(ds); DDataSet result= iter.createEmptyDs(); while ( iter.hasNext() ) { iter.next(); int idx= (int)( iter.getValue(ds) ); iter.putValue( result, vv.value(idx) ); } result.putProperty(QDataSet.UNITS,vv.property(QDataSet.UNITS)); return result; } /** * apply the indeces to the given dimension. * @param ds * @param dimension * @param indices * @return * @see SubsetDataSet */ public static MutablePropertyDataSet applyIndex( QDataSet ds, int dimension, QDataSet indices ) { SubsetDataSet sds= new SubsetDataSet(ds); sds.applyIndex(dimension,indices); return sds; } /** * remove the data at the indeces from the rank 1 dataset. This can be * used for example like so: *
         * {@code
         * ds= ripples(20)
         * ds= removeIndeces( ds, where( valid(ds).eq(0) ) )
         * print ds.length()
         * }
         * 
    * @param vv a rank 1 dataset * @param indeces the indeces to remove. * @see https://github.com/autoplot/dev/blob/master/rfe/20190208/demoRemoveIndeces.jy * @see #removeValues(org.das2.qds.QDataSet, org.das2.qds.QDataSet) which inserts fill. * @see #where(org.das2.qds.QDataSet) * @return a dataset with the values removed. */ public static QDataSet removeIndeces( QDataSet vv, QDataSet indeces ) { if ( indeces.length()==0 ) return vv; if ( !DataSetUtil.isMonotonic(indeces) ) { QDataSet s= sort(indeces); indeces= applyIndex( indeces, s ); } if ( indeces.value(0) % 1 > 0 ) { throw new IllegalArgumentException("indeces must be counting numbers."); } int currentSkipIndex= 0; int nextSkepIndex= (int)indeces.value(currentSkipIndex); int currentIndex= 0; DataSetBuilder build; switch (vv.rank()) { case 1: build= new DataSetBuilder(1,100*(int)Math.ceil((vv.length()-indeces.length())/100.) ); break; case 2: build= new DataSetBuilder(2,100*(int)Math.ceil((vv.length()-indeces.length())/100.),vv.length(0) ); break; default: throw new IllegalArgumentException("only rank 1 and rank 2 datasets are supported"); } while ( currentIndex
         *s= shuffle( ds )
         *dsShuffled= ds[s]
         *
    * @param ds rank 1 dataset * @return rank 1 dataset of integer indeces. * @see #sort(org.das2.qds.QDataSet) */ public static QDataSet shuffle(QDataSet ds) { int size = ds.length(); int[] back = new int[size]; for (int i = 0; i < size; i++) { back[i] = i; } WritableDataSet wds = IDataSet.wrap(back, 1, size, 1, 1); Random r = random; for (int i = 0; i < size; i++) { int i1 = r.nextInt(size - i) + i; double t = wds.value(i1); wds.putValue(i1, wds.value(i)); wds.putValue(i, t); } return wds; } public static QDataSet shuffle(Object ds) { return shuffle(dataset(ds)); } /** * @see org.das2.qds.QDataSet#slice(int) * @param ds the rank N (N>0) or more dataset * @param idx the index * @return rank N-1 dataset */ public static QDataSet slice0( QDataSet ds, int idx ) { return ds.slice(idx); } /** * returns the slice at the given slice location. The dataset * must have monotonic DEPEND_0. * @param ds ripples(20,20). Presently this must be a simple table. * @param sliceds dataset("10.3") * @return the slice at the given location * @see #trim(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet slice0( QDataSet ds, QDataSet sliceds ) { if ( sliceds.rank()!=0 ) { throw new IllegalArgumentException("sliceds must be rank 0"); } QDataSet dep= SemanticOps.xtagsDataSet(ds); if ( dep.rank()!=1 ) { throw new IllegalArgumentException("dataset must have rank 1 tags"); } QDataSet findex= Ops.findex( dep, sliceds ); double f= findex.value(); //TODO: bug 1234: slice at string appears to mis with FFTPower result if ( f>=0. && f=0. && f=0. && f=0. && f user= (Map) dep1.property(QDataSet.USER_PROPERTIES ); if ( user!=null ) { translation= (QDataSet) user.get( "FFT_Translation" ); // kludge for Plasma Wave Group if ( translation!=null && translation.rank()==1 ) { if ( dep0!=null && translation.length()!=dep0.length() ) { throw new IllegalArgumentException("rank 1 FFT_Translation should be the same length as depend_0"); } } } if ( translation!=null ) logger.fine("translation will be applied"); double currentDeltaTime; // ten times the spacing. if ( dep1.rank()==1 ) { currentDeltaTime= dep1.value(10) - dep1.value(0); } else { currentDeltaTime= dep1.value(0,10) - dep1.value(0,0); } double lastDeltaTime= currentDeltaTime; QDataSet powxtags= FFTUtil.getFrequencyDomainTagsForPower(dep1.trim(0,len)); double minD= Double.NEGATIVE_INFINITY, maxD=Double.POSITIVE_INFINITY; if ( dep1.rank()==1 ) { QDataSet ytags= powxtags; if ( translation==null ) result.putProperty( QDataSet.DEPEND_1, ytags ); Units dep1Units= (Units) dep1.property(QDataSet.UNITS); Units dep0Units= dep0==null ? null : (Units) dep0.property(QDataSet.UNITS); if ( dep0Units!=null && dep1Units!=null ) uc= dep1Units.getConverter(dep0Units.getOffsetUnits()); if ( dep0!=null && dep0.property(QDataSet.VALID_MIN)!=null ) minD= ((Number)dep0.property(QDataSet.VALID_MIN)).doubleValue(); if ( dep0!=null && dep0.property(QDataSet.VALID_MAX)!=null ) maxD= ((Number)dep0.property(QDataSet.VALID_MAX)).doubleValue(); } int len1= ( ( ds.length(0)-len ) / step ) + 1; mon.setTaskSize(ds.length()*len1); // assumes all are the same length. mon.started(); mon.setProgressMessage("performing fftPower"); boolean isMono= dep0==null ? true : DataSetUtil.isMonotonic(dep0); for ( int i=0; i 0.01 ) { continue; } if ( Math.abs( lastDeltaTime-currentDeltaTime ) / currentDeltaTime > 0.01 ) { QDataSet powxtags1= FFTUtil.getFrequencyDomainTagsForPower(dep1.trim(istart,istart+len)); QDataSet ytags= (QDataSet) result.property(QDataSet.DEPEND_1); if ( ytags instanceof CdfSparseDataSet ) { ((CdfSparseDataSet)ytags).putValues( result.length(), powxtags1 ); } else { CdfSparseDataSet newYtags= new CdfSparseDataSet(2,ds.length()*len1); newYtags.putValues(0,ytags); newYtags.putValues(result.length(),powxtags1); newYtags.putProperty(QDataSet.UNITS,powxtags1.property(QDataSet.UNITS)); ytags= newYtags; result.putProperty( QDataSet.DEPEND_1, ytags ); } powxtags= powxtags1; lastDeltaTime= currentDeltaTime; } //if ( windowNonUnity ) { // wave= Ops.multiply(wave,window); //} QDataSet vds= FFTUtil.fftPower( fft, wave, window, powxtags ); //QDataSet vds= FFTUtil.fftPower( fft, wave ); if ( windowNonUnity ) { vds= Ops.multiply( vds, DataSetUtil.asDataSet( 1/normalization ) ); } if ( translation!=null ) { QDataSet fftDep1= (QDataSet) vds.property( QDataSet.DEPEND_0 ); switch (translation.rank()) { case 0: fftDep1= Ops.add( fftDep1, translation ); break; case 1: fftDep1= Ops.add( fftDep1, translation.slice(i) ); break; default: throw new IllegalArgumentException("bad rank on FFT_Translation, expected rank 0 or rank 1"); } ((MutablePropertyDataSet)vds).putProperty( QDataSet.DEPEND_0, fftDep1 ); } double d0=0; if ( dep0!=null ) { d0= dep0.value(i) + uc.convert( dep1.value( j*step + len/2 ) ); } else if ( dep0i!=null ) { d0= dep0i.value(j*step+len/2); } else { dep0b= null; } if ( d0>=minD && d0<=maxD) { ((MutablePropertyDataSet)vds).putProperty( QDataSet.DEPEND_0, null ); // save space wasted by redundant freq tags. result.join(vds); if ( dep0b!=null ) { dep0b.putValue(-1, d0 ); dep0b.nextRecord(); } } else { System.err.println("dropping record with invalid timetag: "+d0 ); //TODO: consider setting VALID_MIN, VALID_MAX instead... } if ( mon.isCancelled() ) throw new UncheckedCancelledOperationException("fftPower was cancelled"); } } mon.finished(); QDataSet dep1_= (QDataSet) result.property(QDataSet.DEPEND_1); if ( dep1_.rank()==2 && dep1_.length()!=result.length() ) { ((CdfSparseDataSet)dep1_).setLength(result.length()); // seems cheesy but it's true! } if ( dep0!=null && dep0b!=null ) { dep0b.putProperty(QDataSet.UNITS, dep0.property(QDataSet.UNITS) ); if ( isMono ) dep0b.putProperty(QDataSet.MONOTONIC,true); result.putProperty(QDataSet.DEPEND_0, dep0b.getDataSet() ); } else if ( dep0b!=null ) { if ( isMono ) dep0b.putProperty(QDataSet.MONOTONIC,true); result.putProperty(QDataSet.DEPEND_0, dep0b.getDataSet() ); } if ( title!=null ) result.putProperty( QDataSet.TITLE, title ); result.putProperty( QDataSet.QUBE, Boolean.TRUE ); result.putProperty( QDataSet.SCALE_TYPE, QDataSet.VALUE_SCALE_TYPE_LOG ); return result; } default: throw new IllegalArgumentException("rank not supported: "+ ds.rank() ); } } private static QDataSet fftPowerRank2( QDataSet ds ) { JoinDataSet result= new JoinDataSet(2); for ( int i=0; i3 ) throw new IllegalArgumentException("ds1 must be ds1[n,2]"); if ( !Schemes.isComplexNumbers(ds1) ) ds1= complexDataset( ds1, null ); if ( !Schemes.isComplexNumbers(ds2) ) ds2= complexDataset( ds2, null ); if ( ds1.rank()==1 && ds2.rank()==2 ) ds1= replicate( ds1, ds2.length() ); if ( ds1.rank()==2 && ds1.rank()==1 ) ds2= replicate( ds2, ds1.length() ); if ( ds1.rank()!=ds2.rank() ) throw new IllegalArgumentException("ds1 and ds2 must have the same rank"); QDataSet dep1= complexCoordinateSystem(); ArrayDataSet result= ArrayDataSet.copy(ds1); switch (ds1.rank()) { case 1: { result.putValue( 0, ds1.value(0)*ds2.value(0) - ds1.value(1)*ds2.value(1) ); result.putValue( 1, ds1.value(0)*ds2.value(1) + ds1.value(1)*ds2.value(0) ); result.putProperty( QDataSet.DEPEND_0, dep1 ); break; } case 2: { for ( int i=0; i160 && delta<181 || delta>320 && delta<362 ) ) { return Math.PI/180; } else if ( u==Units.hours ) { // untested. return Math.PI/12; // TAU/24. } else if ( u==Units.dimensionless && ( delta>Math.PI*160/180 && deltaMath.PI*320/180 && delta3 ) { throw new IllegalArgumentException("rank exception, expected rank 1,2 or 3: got "+ds ); } else if ( ds.rank()==1 ) { // wrap to make rank 2 QDataSet c= (QDataSet) ds.property( QDataSet.CONTEXT_0 ); JoinDataSet dep0; Units dep0u; JoinDataSet jds= new JoinDataSet(ds); if ( c!=null && c.rank()==0 ) { dep0u= (Units) c.property(QDataSet.UNITS); dep0= new JoinDataSet(c); if ( dep0u!=null ) { dep0.putProperty( QDataSet.UNITS, dep0u ); jds.putProperty( QDataSet.DEPEND_0, dep0 ); } } ds= jds; } else if ( ds.rank()==3 ) { // slice it and do the process to each branch. JoinDataSet result= new JoinDataSet(3); mon.setTaskSize( ds.length()*10 ); mon.started(); for ( int i=0; i=minD && d0<=maxD) { result.join(vds); if ( dep0b!=null ) { dep0b.putValue(-1, d0 ); dep0b.nextRecord(); } } else { System.err.println("dropping record with invalid timetag: "+d0 ); //TODO: consider setting VALID_MIN, VALID_MAX instead... } mon.setTaskProgress(i*len1+j); } } mon.finished(); if ( dep0!=null && dep0b!=null ) { dep0b.putProperty(QDataSet.UNITS, dep0.property(QDataSet.UNITS) ); if ( isMono ) dep0b.putProperty(QDataSet.MONOTONIC,true); result.putProperty(QDataSet.DEPEND_0, dep0b.getDataSet() ); } else if ( dep0b!=null ) { if ( isMono ) dep0b.putProperty(QDataSet.MONOTONIC,true); result.putProperty(QDataSet.DEPEND_0, dep0b.getDataSet() ); } if ( title!=null ) result.putProperty( QDataSet.TITLE, title ); result.putProperty( QDataSet.QUBE, Boolean.TRUE ); return result; } /** * perform ffts on the rank 1 dataset to make a rank2 spectrogram. * @param ds rank 1 dataset * @param len the window length * @return rank 2 dataset. */ public static QDataSet fftWindow(QDataSet ds, int len) { QDataSet result = WaveformToSpectrum.getTableDataSet( ds, len); return result; } /** * returns a two element, rank 1 dataset containing the extent of the data. * Note this accounts for DELTA_PLUS, DELTA_MINUS properties. * Note this accounts for BIN_PLUS, BIN_MINUS properties. * The property QDataSet.SCALE_TYPE is set to lin or log. * The property count is set to the number of valid measurements. * TODO: this could use MONOTONIC, but it doesn't. DELTA_PLUS, DELTA_MINUS make that more difficult. * @see DataSetUtil#rangeOfMonotonic(org.das2.qds.QDataSet) * @param ds * @return two element, rank 1 "bins" dataset. */ public static QDataSet extent( QDataSet ds ) { return extent( ds, null ); } /** * returns a two element, rank 1 dataset containing the extent (min to max) of the data. * Note this accounts for DELTA_PLUS, DELTA_MINUS properties. * Note this accounts for BIN_PLUS, BIN_MINUS properties. * If no valid data is found then [fill,fill] is returned. * The property QDataSet.SCALE_TYPE is set to lin or log. * The property count is set to the number of valid measurements. * 2010-10-14: add branch for monotonic datasets. * @param ds the dataset to measure the extent * @param range if non-null, return the union of this range and the extent. This must not contain fill! * @return two element, rank 1 "bins" dataset. */ public static QDataSet extent( QDataSet ds, QDataSet range ) { QDataSet wds = DataSetUtil.weightsDataSet(ds); return extent( ds, wds, range ); } /** * like extent, but does not account for DELTA_PLUS, DELTA_MINUS, * BIN_PLUS, BIN_MINUS, BIN_MIN or BIN_MAX properties. This was introduced to provide * a fast way to identify constant datasets and the extent that non-constant * datasets vary. * @param ds the dataset to measure the extent rank 1 or rank 2 bins * @param wds a weights dataset, containing zero where the data is not valid, positive non-zero otherwise. If null, then all finite data is treated as valid. * @param range if non-null, return the union of this range and the extent. This must not contain fill! * @return two element, rank 1 "bins" dataset. * @see #extent(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet extentSimple( QDataSet ds, QDataSet wds, QDataSet range ) { logger.entering(CLASSNAME, "extentSimple" ); int count=0; if ( wds==null ) { wds= DataSetUtil.weightsDataSet(ds); } double [] result; Number dfill= ((Number)wds.property(WeightsDataSet.PROP_SUGGEST_FILL)); double fill= dfill!=null ? dfill.doubleValue() : -1e31; if ( range==null ) { result= new double[]{ Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; } else { result= new double[]{ range.value(0), range.value(1) }; if ( range.value(0)==fill ) System.err.println("range passed into extent contained fill"); } boolean monoCheck; // true if the data appears to be monotonic decreasing or increasing. int ifirst,ilast; QDataSet min= ds; QDataSet max= ds; if ( ds.rank()==2 && SemanticOps.isBins(ds) ) { min= Ops.slice1(ds,0); max= Ops.slice1(ds,1); ds= min; wds= Ops.slice1(wds,0); } if ( ds.rank()>0 ) { // find the first and last valid points. ifirst=0; int n= ds.length(); ilast= n-1; monoCheck= Boolean.TRUE.equals( ds.property(QDataSet.MONOTONIC )); if ( ds.rank()==1 && monoCheck && n>0 ) { while ( ifirst=0 && wds.value(ilast)==0.0 ) ilast--; int imiddle= ( ifirst + ilast ) / 2; if ( wds.value(imiddle)>0 ) { double dir= ds.value(ilast) - ds.value(ifirst) ; if ( ( ds.value(imiddle) - ds.value(ifirst) ) * dir < 0 ) { logger.fine("this data isn't really monotonic."); monoCheck= false; } } } } else { monoCheck= false; ifirst=0; ilast= 0; // not used. } if ( ds.rank()==1 && monoCheck ) { count= Math.max( 0, ilast - ifirst + 1 ); if ( count>0 ) { result[0]= Math.min( result[0], ds.value(ifirst) ); result[1]= Math.max( result[1], ds.value(ilast) ); } else { result[0] = range==null ? fill : range.value(0); result[1] = range==null ? fill : range.value(1); } if ( result[0]>result[1] ) { // okay with fill. double t= result[1]; result[1]= result[0]; result[0]= t; } } else { QubeDataSetIterator it = new QubeDataSetIterator(ds); while (it.hasNext()) { it.next(); if (it.getValue(wds) > 0.) { count++; result[0] = Math.min(result[0], it.getValue(min)); result[1] = Math.max(result[1], it.getValue(max)); } else { } } if ( count==0 ) { // no valid data! result[0] = fill; result[1] = fill; } } DDataSet qresult= DDataSet.wrap(result); qresult.putProperty( QDataSet.SCALE_TYPE, ds.property(QDataSet.SCALE_TYPE) ); qresult.putProperty( QDataSet.USER_PROPERTIES, Collections.singletonMap( "count", count ) ); qresult.putProperty( QDataSet.BINS_0, "min,maxInclusive" ); qresult.putProperty( QDataSet.UNITS, ds.property(QDataSet.UNITS ) ); if ( result[0]==fill ) qresult.putProperty( QDataSet.FILL_VALUE, fill); logger.exiting(CLASSNAME, "extentSimple" ); return qresult; } /** * returns a two element, rank 1 dataset containing the extent (min to max) of the data, allowing an external * evaluation of the weightsDataSet. If no valid data is found then [fill,fill] is returned. * @param ds the dataset to measure the extent rank 1 or rank 2 bins * @param wds a weights dataset, containing zero where the data is not valid, positive non-zero otherwise. If null, then all finite data is treated as valid. * @param range if non-null, return the union of this range and the extent. This must not contain fill! * @return two element, rank 1 "bins" dataset. */ public static QDataSet extent( QDataSet ds, QDataSet wds, QDataSet range ) { logger.entering(CLASSNAME, "extent" ); QDataSet max = ds; QDataSet min = ds; QDataSet deltaplus; QDataSet deltaminus; deltaplus = (QDataSet) ds.property(QDataSet.DELTA_PLUS); deltaminus = (QDataSet) ds.property(QDataSet.DELTA_MINUS); if ( ds.property(QDataSet.BIN_PLUS )!=null ) deltaplus= (QDataSet)ds.property(QDataSet.BIN_PLUS ); if ( ds.property(QDataSet.BIN_MINUS )!=null ) deltaminus= (QDataSet)ds.property(QDataSet.BIN_MINUS ); if ( deltaplus!=null ) { Units u= SemanticOps.getUnits(deltaplus); deltaplus= Ops.greaterOf(u.createDatum(0),deltaplus); } if ( deltaminus!=null ) { Units u= SemanticOps.getUnits(deltaminus); deltaminus= Ops.greaterOf(u.createDatum(0),deltaminus); } if ( ds.rank()==2 && SemanticOps.isBins(ds) ) { min= Ops.slice1(ds,0); max= Ops.slice1(ds,1); ds= min; if ( wds!=null ) wds= Ops.slice1(wds,0); } if ( ds.property(QDataSet.BIN_MAX )!=null ) { max= (QDataSet)ds.property(QDataSet.BIN_MAX); } if ( ds.property(QDataSet.BIN_MIN )!=null ) { min= (QDataSet)ds.property(QDataSet.BIN_MIN); } int count=0; if ( wds==null ) { wds= DataSetUtil.weightsDataSet(ds); } double [] result; Number dfill= ((Number)wds.property(WeightsDataSet.PROP_SUGGEST_FILL)); double fill= dfill!=null ? dfill.doubleValue() : -1e31; if ( range==null ) { result= new double[]{ Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; } else { result= new double[]{ range.value(0), range.value(1) }; if ( range.value(0)==fill ) logger.warning("range passed into extent contained fill"); } boolean monoCheck; int ifirst,ilast; if ( ds.rank()>0 ) { // find the first and last valid points. ifirst=0; int n= ds.length(); ilast= n-1; monoCheck= Boolean.TRUE.equals( ds.property(QDataSet.MONOTONIC )); if ( ds.rank()==1 && monoCheck && n>0 ) { monoCheck= DataSetUtil.isMonotonicQuick(ds); if ( !monoCheck ) logger.log(Level.WARNING, "this data isn''t really monotonic: {0}", ds); if ( monoCheck ) { while ( wds.value(ilast)==0.0 && ilast>0 ) ilast--; if ( ilast0 ) { result[0]= Math.min( result[0], min.value(ifirst) ); result[1]= Math.max( result[1], max.value(ilast) ); } else { result[0] = range==null ? fill : range.value(0); result[1] = range==null ? fill : range.value(1); } if ( result[0]>result[1] ) { // okay with fill. double t= result[1]; result[1]= result[0]; result[0]= t; } } else { if (deltaplus != null) { max = Ops.add(max, deltaplus ); } if (deltaminus != null) { min = Ops.subtract(min, deltaminus); } if ( ds.rank()==1 ) { // optimize for rank 1, see https://sourceforge.net/p/autoplot/bugs/1801/ int ni= min.length(); for ( int i=0; i0 ) { count++; result[0]= Math.min( result[0], min.value(i) ); result[1]= Math.max( result[1], max.value(i) ); } } } else if ( ds.rank()==2 ) { int ni= min.length(); for ( int i=0; i0 ) { count++; result[0]= Math.min( result[0], min.value(i,j) ); result[1]= Math.max( result[1], max.value(i,j) ); } } } } else { QubeDataSetIterator it = new QubeDataSetIterator(ds); while (it.hasNext()) { it.next(); if (it.getValue(wds) > 0.) { count++; result[0] = Math.min(result[0], it.getValue(min)); result[1] = Math.max(result[1], it.getValue(max)); } } } if ( count==0 ) { // no valid data! result[0] = fill; result[1] = fill; } } DDataSet qresult= DDataSet.wrap(result); qresult.putProperty( QDataSet.SCALE_TYPE, ds.property(QDataSet.SCALE_TYPE) ); qresult.putProperty( QDataSet.USER_PROPERTIES, Collections.singletonMap( "count", count ) ); qresult.putProperty( QDataSet.BINS_0, "min,maxInclusive" ); qresult.putProperty( QDataSet.UNITS, ds.property(QDataSet.UNITS ) ); if ( result[0]==fill ) qresult.putProperty( QDataSet.FILL_VALUE, fill); logger.exiting( CLASSNAME, "extent" ); return qresult; } public static QDataSet extent445( QDataSet ds ) { return extentSimple(ds,null); } /** * This is introduced to study effect of * https://sourceforge.net/p/autoplot/feature-requests/445/ * Do not use this in scripts!!! * This is very interesting: * * Ops.extent: 53ms * simpleRange: 77ms * study445FastRange: 4ms * * Ops.extent: 76ms * simpleRange: 114ms * study445FastRange: 12ms * * This is likely showing that DataSetIterator is slow... * * @param ds the dataset * @param range null, or rank 1 bins dataset * @return rank 1, two-element range, or when all data is fill result[0] will be Double.POSITIVE_INFINITY. * @see #extentSimple(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet extentSimple( QDataSet ds, QDataSet range ) { logger.entering(CLASSNAME, "extentSimple" ); QDataSet max= ds; QDataSet min= ds; if ( ds.rank()==2 && SemanticOps.isBins(ds) ) { min= Ops.slice1(ds,0); max= Ops.slice1(ds,1); ds= min; } Number nfill= (Number)ds.property(QDataSet.FILL_VALUE); double fill= ( nfill==null ) ? 1e38 : nfill.doubleValue(); int count=0; double[] result; if ( range==null ) { result= new double[]{Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY}; } else { result= new double[]{ range.value(0), range.value(1) }; } QDataSet valid= Ops.valid(ds); switch (ds.rank()) { case 1: int n= ds.length(); for ( int i=0; i0 ) { double min1= min.value(i); // Math.min requires we do extra redundent checks, and we leave this routine, but appearently this is no faster... result[0]= result[0] < min1 ? result[0] : min1; double max1= max.value(i); result[1]= result[1] > max1 ? result[1] : max1; count++; } } break; case 2: { int n0= ds.length(); for ( int i0=0; i00 ) { result[0]= Math.min( result[0], min.value(i0,i1) ); result[1]= Math.max( result[1], max.value(i0,i1) ); count++; } } } break; } case 3: { int n0= ds.length(); for ( int i0=0; i00 ) { result[0]= Math.min( result[0], min.value(i0,i1,i2) ); result[1]= Math.max( result[1], max.value(i0,i1,i2) ); count++; } } } } break; } case 4: { int n0= ds.length(); for ( int i0=0; i00 ) { result[0]= Math.min( result[0], min.value(i0,i1,i2,i3) ); result[1]= Math.max( result[1], max.value(i0,i1,i2,i3) ); count++; } } } } } break; } case 0: result[0]= ds.value(); result[1]= ds.value(); count++; break; default: break; } DDataSet qresult= DDataSet.wrap(result); qresult.putProperty( QDataSet.SCALE_TYPE, ds.property(QDataSet.SCALE_TYPE) ); qresult.putProperty( QDataSet.USER_PROPERTIES, Collections.singletonMap( "count", count ) ); qresult.putProperty( QDataSet.BINS_0, "min,maxInclusive" ); qresult.putProperty( QDataSet.UNITS, ds.property(QDataSet.UNITS ) ); if ( result[0]==fill ) qresult.putProperty( QDataSet.FILL_VALUE, fill); logger.exiting(CLASSNAME, "extentSimple" ); return qresult; } /** * calculate the range of data, then rescale it so that the smallest * values becomes min and the largest values becomes max. * @param data rank 1 dataset (TODO: easily modify this to support rank N) * @param min rank 0 min * @param max rank 0 max * @return rescaled data. */ public static QDataSet rescale( QDataSet data, QDataSet min, QDataSet max ) { QDataSet extent= extent(data); QDataSet w= Ops.subtract( extent.slice(1), extent.slice(0) ); if ( w.value()==0 ) { return replicate( min, data.length() ); } data= Ops.add( min, Ops.divide( Ops.subtract( data, extent.slice(0) ), w ) ); return data; } /** * returns rank 1 QDataSet range relative to range "dr", where 0. is the minimum, and 1. is the maximum. * For example rescaleRange(ds,1,2) is scanNext, rescaleRange(ds,0.5,1.5) is zoomOut. This is similar * to the DatumRange rescale functions. * @param dr a QDataSet with bins and with nonzero width. * @param min the new min normalized with respect to this range. 0. is this range's min, 1 is this range's max, -1 is * min-width. * @param max the new max normalized with respect to this range. 0. is this range's min, 1 is this range's max, -1 is * min-width. * @return new rank 1 QDataSet range. */ public static QDataSet rescaleRange( QDataSet dr, double min, double max ) { if ( dr.rank()!=1 ) { throw new IllegalArgumentException("Rank must be 1"); } if ( dr.length()!=2 ) { throw new IllegalArgumentException("length must be 2"); } double w= dr.value(1) - dr.value(0); if ( Double.isInfinite(w) || Double.isNaN(w) ) { throw new RuntimeException("width is not finite"); } if ( w==0. ) { // condition that might cause an infinate loop! For now let's check for this and throw RuntimeException. throw new RuntimeException("width is zero!"); } DDataSet result= DDataSet.createRank1(2); result.putValue( 0, dr.value(0) + w*min ); result.putValue( 1, dr.value(0) + w*max ); DataSetUtil.copyDimensionProperties( dr, result ); return result; } /** * like rescaleRange, but look at log/lin flag. * @param dr * @param min * @param max * @return two-element rank 1 QDataSet * @see org.das2.qds.QDataSet#SCALE_TYPE */ public static QDataSet rescaleRangeLogLin( QDataSet dr, double min, double max ) { if ( dr.rank()!=1 ) { throw new IllegalArgumentException("Rank must be 1"); } if ( dr.length()!=2 ) { throw new IllegalArgumentException("length must be 2"); } DDataSet result= DDataSet.createRank1(2); if ( "log".equals( dr.property(QDataSet.SCALE_TYPE) ) ) { double s1= Math.log10( dr.value(0) ); double s2= Math.log10( dr.value(1) ); double w= s2 - s1; if ( Double.isInfinite(w) || Double.isNaN(w) ) { throw new RuntimeException("width is not finite"); } if ( w==0. ) { // condition that might cause an infinate loop! For now let's check for this and throw RuntimeException. throw new RuntimeException("width is zero!"); } s2= Math.pow( 10, s1 + max * w ); // danger s1= Math.pow( 10, s1 + min * w ); result.putValue( 0, s1 ); result.putValue( 1, s2 ); } else { double w= dr.value(1) - dr.value(0); if ( Double.isInfinite(w) || Double.isNaN(w) ) { throw new RuntimeException("width is not finite"); } if ( w==0. ) { throw new RuntimeException("width is zero!"); } result.putValue( 0, dr.value(0) + w*min ); result.putValue( 1, dr.value(0) + w*max ); } DataSetUtil.copyDimensionProperties( dr, result ); return result; } /** * make a 2-D histogram of the data in x and y. For example *
         *x= randn(10000)+1
         *y= randn(10000)+4
         *zz= histogram2d( x,y, [30,30], dataset([0,8]), dataset([-2,6]) )
         *plot( zz )
         *
    * The result will be a rank 2 dataset with DEPEND_0 and DEPEND_1 indicating * the bin locations. If the xrange or yrange is dimensionless, then * use the units of x or y. * @param x the x values * @param y the y values * @param bins number of bins in x and y * @param xrange a rank 1 2-element bounds dataset, so that Units can be specified. * @param yrange a rank 1 2-element bounds dataset, so that Units can be specified. * @return a rank 2 dataset * @see #histogram(org.das2.qds.QDataSet, double, double, double) * @see org.das2.qds.util.Reduction#histogram2D(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet histogram2d( QDataSet x, QDataSet y, int[] bins, QDataSet xrange, QDataSet yrange ) { int nx, ny; if ( bins==null ) { nx=20; ny=20; } else { nx=bins[0]; ny=bins[1]; } if ( SemanticOps.getUnits(xrange)==Units.dimensionless ) { xrange= putProperty( xrange, QDataSet.UNITS, SemanticOps.getUnits(x) ); } if ( SemanticOps.getUnits(yrange)==Units.dimensionless ) { yrange= putProperty( yrange, QDataSet.UNITS, SemanticOps.getUnits(y) ); } if ( x==null ) throw new NullPointerException("x is null"); if ( y==null ) throw new NullPointerException("y is null"); if ( xrange.rank()!=1 || xrange.length()!=2 ) { throw new IllegalArgumentException("xrange should be rank 1, two-element dataset"); } if ( yrange.rank()!=1 || yrange.length()!=2 ) { throw new IllegalArgumentException("yrange should be rank 1, two-element dataset"); } double minx= xrange.value(0); double miny= yrange.value(0); double binsizex= ( xrange.value(1)-xrange.value(0) ) / nx; double binsizey= ( yrange.value(1)-yrange.value(0) ) / ny; MutablePropertyDataSet xtags = DataSetUtil.tagGenDataSet( nx, minx+binsizex/2, binsizex, SemanticOps.getUnits(xrange) ); xtags.putProperty( QDataSet.NAME, x.property(QDataSet.NAME) ); xtags.putProperty( QDataSet.LABEL, x.property(QDataSet.LABEL) ); xtags.putProperty( QDataSet.TITLE, x.property(QDataSet.TITLE) ); xtags.putProperty( QDataSet.TYPICAL_MAX, x.property(QDataSet.TYPICAL_MAX) ); xtags.putProperty( QDataSet.TYPICAL_MIN, x.property(QDataSet.TYPICAL_MIN) ); MutablePropertyDataSet ytags = DataSetUtil.tagGenDataSet( ny, miny+binsizey/2, binsizey, SemanticOps.getUnits(yrange) ); ytags.putProperty( QDataSet.NAME, y.property(QDataSet.NAME) ); ytags.putProperty( QDataSet.LABEL, y.property(QDataSet.LABEL) ); ytags.putProperty( QDataSet.TITLE, y.property(QDataSet.TITLE) ); ytags.putProperty( QDataSet.TYPICAL_MAX, y.property(QDataSet.TYPICAL_MAX) ); ytags.putProperty( QDataSet.TYPICAL_MIN, y.property(QDataSet.TYPICAL_MIN) ); final int[] hits = new int[nx*ny]; QubeDataSetIterator iter = new QubeDataSetIterator(x); QDataSet wdsx= DataSetUtil.weightsDataSet(x); QDataSet wdsy= DataSetUtil.weightsDataSet(y); int count=0; while ( iter.hasNext() ) { iter.next(); double x1 = iter.getValue(x); double y1 = iter.getValue(y); double w = iter.getValue(wdsx) * iter.getValue(wdsy); if ( w>0. ) { int ibinx = (int) Math.floor(( x1 - minx ) / binsizex ); int ibiny = (int) Math.floor(( y1 - miny ) / binsizey ); if (ibinx >= 0 && ibinx < nx && ibiny>=0 && ibiny0 ) { result.putValue(i, j, ds1.value(i) * ds2.value(j)); } else { result.putValue(i, j, fill ); hasFill= true; } } } result.putProperty( QDataSet.DEPEND_0, ds1.property(QDataSet.DEPEND_0 ) ); result.putProperty( QDataSet.DEPEND_1, ds2.property(QDataSet.DEPEND_0 ) ); if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } Units units1= SemanticOps.getUnits(ds1); Units units2= SemanticOps.getUnits(ds2); Units units; if ( units1==Units.dimensionless ) { // allow outerProduct( replicate(1,freq.length()), epoch ) units= units2; } else if ( units2==Units.dimensionless ) { units= units1; } else { units= multiplyUnits( units1, units2 ); } if ( units!=Units.dimensionless ) result.putProperty( QDataSet.UNITS, units ); return result; } public static QDataSet outerProduct( Object ds1, Object ds2) { return outerProduct( dataset(ds1), dataset(ds2) ); } /** * returns outerSum of two rank 1 datasets, a rank 2 dataset with * elements R[i,j]= ds1[i] + ds2[j]. * * @param ds1 a rank 1 dataset of length m * @param ds2 a rank 1 dataset of length n * @return a rank 2 dataset[m,n] */ public static QDataSet outerSum(QDataSet ds1, QDataSet ds2) { QDataSet w1= DataSetUtil.weightsDataSet(ds1); QDataSet w2= DataSetUtil.weightsDataSet(ds2); double fill= -1e38; boolean hasFill= false; DDataSet result = DDataSet.createRank2(ds1.length(), ds2.length()); Map props= new HashMap(); BinaryOp b= addGen( ds1, ds2, props ); for (int i = 0; i < ds1.length(); i++) { for (int j = 0; j < ds2.length(); j++) { if ( w1.value(i)*w2.value(j)>0 ) { result.putValue(i, j, b.op( ds1.value(i), ds2.value(j) ) ); } else { result.putValue(i, j, fill ); hasFill= true; } } } result.putProperty( QDataSet.DEPEND_0, ds2.property(QDataSet.DEPEND_0 ) ); result.putProperty( QDataSet.DEPEND_1, ds2.property(QDataSet.DEPEND_0 ) ); if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } result.putProperty( QDataSet.UNITS, props.get(QDataSet.UNITS ) ); return result; } public static QDataSet outerSum( Object ds1, Object ds2) { return outerSum( dataset(ds1), dataset(ds2) ); } /** * element-wise floor function. * @param ds1 * @return */ public static QDataSet floor(QDataSet ds1) { return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double a) { return Math.floor(a); } }); } public static double floor( double x ) { return Math.floor(x); } public static QDataSet floor( Object ds1 ) { return floor( dataset(ds1) ); } /** * element-wise ceil function. * @param ds1 * @return */ public static QDataSet ceil(QDataSet ds1) { return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double a) { return Math.ceil(a); } }); } public static double ceil( double x ) { return Math.ceil(x); } public static QDataSet ceil( Object x ) { return ceil( dataset(x) ); } /** * element-wise round function. 0.5 is round up. * @param ds1 * @return */ public static QDataSet round(QDataSet ds1) { return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double a) { return Math.round(a); } }); } /** * for Jython, we handle this because the double isn't coerced. * @param x * @return */ public static double round( double x ) { return Math.round( x ); } public static QDataSet round( Object x ) { return round( dataset(x) ); } /** * element-wise round function, which rounds to i decimal places. * 0.5 is round up. * @param ds1 the dataset. * @param ndigits round to this number of digits after the decimal point (e.g. 1=0.1 2=0.01 -1=10) * @return dataset with the same geometry with each value rounded. */ public static QDataSet round(QDataSet ds1, int ndigits ) { final double res= Math.pow(10,ndigits); return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double a) { return Math.round(a*res) / res; } }); } /** * for Jython, we handle this because the double isn't coerced. * @param x the double * @param ndigits round to this number of digits after the decimal point (e.g. 1=0.1 2=0.01 -1=10) * @return the rounded double. */ public static double round( double x, int ndigits ) { final double res= Math.pow(10,ndigits); return Math.round( x*res )/res; } /** * element-wise round function, which rounds to i decimal places. * 0.5 is round up. * @param ds1 the dataset. * @param ndigits round to this number of digits after the decimal point (e.g. 1=0.1 2=0.01 -1=10) * @return dataset with the same geometry with each value rounded. */ public static QDataSet round( Object ds1, int ndigits ) { return round( dataset(ds1), ndigits ); } /** * Returns the signum function of the argument; zero if the argument is * zero, 1.0 if the argument is greater than zero, -1.0 if the argument * is less than zero. * @param ds1 * @see #copysign * @see #negate * @return */ public static QDataSet signum(QDataSet ds1) { return applyUnaryOp(ds1, new UnaryOp() { @Override public double op(double a) { return Math.signum(a); } }); } public static double signum( double x ) { return Math.signum(x); } public static QDataSet signum( Object x ) { return signum( dataset(x) ); } /** * Returns the first floating-point argument with the sign of the * second floating-point argument. * @param magnitude * @param sign * @see #signum * @see #negate * @return */ public static QDataSet copysign(QDataSet magnitude, QDataSet sign) { return applyBinaryOp(magnitude, sign, new BinaryOp() { @Override public double op(double m, double s) { double s1 = Math.signum(s); return Math.abs(m) * (s1 == 0 ? 1. : s1); } }); } public static double copysign( double x, double y ) { return Math.abs(x)*Math.signum(y); } public static QDataSet copysign( Object x, Object y ) { return multiply( abs(dataset(x)), signum( dataset(y) ) ); } /** * returns the "floating point index" of each element of vv within the monotonically * increasing dataset uu. This handy number is the index of the lower bound plus the * fractional position between the two bounds. For example, findex([100,110,120],111.2) is * 1.12 because it is just after the 1st element (110) and is 12% of the way from 110 to 120. * The result dataset will have the same geometry as vv. The result will be negative * when the element of vv is below the smallest element of uu. The result will be greater * than or equal to the length of uu minus one when it is greater than all elements. * When the monotonic dataset contains repeat values, the index of the first is returned. * * Paul Ricchiazzi wrote this routine first for IDL as a fast replacement for the interpol routine, but * it is useful in other situations as well. * * @param uu rank 1 monotonically increasing dataset, non-repeating, containing no fill values. * @param vv rank N dataset with values in the same physical dimension as uu. Now fill is allowed. * @return rank N dataset with the same geometry as vv. It will have DEPEND_0=vv when vv is rank 1. */ public static QDataSet findex(QDataSet uu, QDataSet vv) { if ( uu==null ) throw new IllegalArgumentException("uu parameter of findex is null"); if ( vv==null ) throw new IllegalArgumentException("vv parameter of findex is null"); if ( uu.length()==0 ) throw new IllegalArgumentException("uu has length=0"); if (!DataSetUtil.isMonotonic(uu)) { throw new IllegalArgumentException("u must be monotonic"); } if ( !DataSetUtil.isMonotonicAndIncreasingQuick(uu) ) { throw new IllegalArgumentException("u must be monotonically increasing and non-repeating"); } DDataSet result = DDataSet.create(DataSetUtil.qubeDims(vv)); QubeDataSetIterator it = new QubeDataSetIterator(vv); int ic0 = 0; int ic1 = 1; double uc0 = uu.value(ic0); double uc1 = uu.value(ic1); int n = uu.length(); Units vvunits= SemanticOps.getUnits( vv ); Units uuunits= SemanticOps.getUnits( uu ); QDataSet ww= DataSetUtil.weightsDataSet(vv); UnitsConverter uc= UnitsConverter.getConverter( vvunits, uuunits ); double fill= -1e31; boolean hasFill= false; int extentWarning= 0; while (it.hasNext()) { it.next(); double d = uc.convert( it.getValue(vv) ); double w = it.getValue(ww); if ( w==0 ) { it.putValue(result, fill ); hasFill= true; continue; } // TODO: optimize by only doing binary search below or above ic0&ic1. if (uc0 <= d && d <= uc1) { // optimize by seeing if old pair still backets the current point. double ff = d==uc0 ? 0 : (d - uc0) / (uc1 - uc0); // may be 1.0 if ( ( ( ic0 + ff ) / n ) < -3 || ( ( ic0 + ff - n ) / n ) > 3 ) { extentWarning++; } it.putValue(result, ic0 + ff); } else { int index = DataSetUtil.binarySearch(uu, d, 0, uu.length() - 1); if (index == -1) { ic0 = 0; ic1 = 1; } else if (index < (-n)) { ic0 = n - 2; ic1 = n - 1; } else if (index < 0) { ic1 = ~index; // usually this is the case ic0 = ic1 - 1; } else if (index >= (n - 1)) { ic0 = n - 2; ic1 = n - 1; } else { ic0 = index; ic1 = index + 1; } uc0 = uu.value(ic0); uc1 = uu.value(ic1); double ff = d==uc0 ? 0 : (d - uc0) / (uc1 - uc0); // may be 1.0 if ( ( ( ic0 + ff ) / n ) < -3 || ( ( ic0 + ff - n ) / n ) > 3 ) { extentWarning++; } it.putValue(result, ic0 + ff); } } if ( extentWarning>0 ) { logger.log(Level.WARNING, "alarming extrapolation in findex is suspicious: count:{0} uu:{1} vv:{2}", new Object[]{ extentWarning, extent(uu), extent(vv)}); } if ( result.rank()==1 ) { result.putProperty( QDataSet.DEPEND_0, vv ); } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } return result; } public static QDataSet findex( Object x, Object y ) { return findex( dataset(x), dataset(y) ); } private static boolean isDimensionless( QDataSet ds ) { Units u= (Units)ds.property(QDataSet.UNITS); return u==null || u==Units.dimensionless; } /** * interpolate values from rank 1 dataset vv using fractional indeces * in rank N findex. For example, findex=1.5 means interpolate * the 1st and 2nd indeces with equal weight, 1.1 means * 90% of the first mixed with 10% of the second. * Only modest extrapolations where findex>=-0.5 and findex<=L-0.5 are allowed, where L is the number of points. * The findex parameter must be dimensionless, to ensure that the caller is not passing in physical data. * * Note there is no check on CADENCE. * Note nothing is done with DEPEND_0, presumably because was already calculated and used for findex. * * Here is an example use of this in Autoplot's Jython code: *
         * {@code
         *xx= [1,2,3,4]
         *yy= [2,4,5,4]
         *xxx= linspace(0,5,100)
         *yyy= interpolate( yy, findex(xx,xxx) )
         *
         *plot( xx, yy, symbolSize=20 )
         *plot( addPlotElement(0), xxx, yyy )
         * }
         * 
    * * @param vv rank 1 dataset having length L that is the data to be interpolated. * @param findex rank N dataset of fractional indeces. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @return the result. * @see #interpolateMod interpolateMod, for data like longitude where 259 deg is 2 degrees away from 1 deg */ public static QDataSet interpolate( QDataSet vv, QDataSet findex ) { if ( vv.rank()==2 ) { QDataSet result= null; for ( int j=0; j 100 ) { logger.warning("findex looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex0.value(0) / vv.length() < -100 ) { logger.warning("findex looks suspicious, where its min would result in unrealistic extrapolations"); } DDataSet result = DDataSet.create(DataSetUtil.qubeDims(findex)); QubeDataSetIterator it = new QubeDataSetIterator(findex); int ic0=0, ic1=0; int n = vv.length(); QDataSet wds= DataSetUtil.weightsDataSet( vv ); Number fill= (Number)wds.property(QDataSet.FILL_VALUE); double dfill; if ( fill==null ) dfill= -1e38; else dfill= fill.doubleValue(); result.putProperty( QDataSet.FILL_VALUE, dfill ); boolean hasFill= false; QDataSet wfindex= DataSetUtil.weightsDataSet(findex); wfindex= copy(wfindex); // This was done presumably for performance. // Starting with v2014a_12, immodest extrapolations beyond 0.5 are no longer allowed. boolean noExtrapolate= true; while (it.hasNext()) { it.next(); if ( it.getValue(wfindex)==0 ) { it.putValue( result, dfill ); hasFill= true; continue; } double ff = it.getValue(findex); if ( ff>=0 && ff n - 0.5 ) { // would extrapolate immodestly it.putValue( result, dfill ); hasFill= true; continue; } else if (ff < 0.0 ) { ic0 = 0; // extrapolate ic1 = 1; } else if (ff >= n - 1) { ic0 = n - 2; // extrapolate ic1 = n - 1; } double alpha = ff - ic0; if ( wds.value(ic0)>0 && wds.value(ic1)>0 ) { double vv0 = vv.value(ic0); double vv1 = vv.value(ic1); it.putValue(result, vv0 + alpha * (vv1 - vv0)); } else { it.putValue(result, dfill ); hasFill= true; } } DataSetUtil.copyDimensionProperties( vv, result ); //allow findex0 to provide DEPEND_0 and DEPEND_1. for ( int i=0; i<=findex.rank(); i++ ) { QDataSet depend= (QDataSet) findex.property( "DEPEND_"+i ); if ( depend!=null ) { result.putProperty( "DEPEND_"+i, depend ); } } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, dfill ); } return result; } /** * * @param vv object that can be converted to rank 1 dataset, such as array. These are the rank 1 dataset that is the data to be interpolated. * @param findex object that can be converted to a rank N dataset, such as an array. These are the rank N dataset of fractional indeces. * @return rank N dataset. */ public static QDataSet interpolate( Object vv, Object findex ) { return interpolate( dataset(vv), dataset(findex) ); } /** * interpolate values from rank 2 dataset vv using fractional indeces * in rank N findex, using bilinear interpolation. See also interpolateGrid. * * @param vv rank 2 dataset. * @param findex0 rank N dataset of fractional indeces for the zeroth index. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @param findex1 rank N dataset of fractional indeces for the first index. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @return rank N dataset * @see #findex findex, the 1-D findex command * @see #interpolateGrid(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet interpolate(QDataSet vv, QDataSet findex0, QDataSet findex1) { if ( findex0.rank()>0 && findex0.length()!=findex1.length() ) { throw new IllegalArgumentException("findex0 and findex1 must have the same geometry."); } if ( !isDimensionless(findex0) ) throw new IllegalArgumentException("findex0 argument should be dimensionless, expected output from findex command."); if ( !isDimensionless(findex1) ) throw new IllegalArgumentException("findex1 argument should be dimensionless, expected output from findex command."); if ( !DataSetUtil.checkQube(vv) ) { logger.warning("vv is not a qube"); } QDataSet fex0= extent(findex0); if ( ( fex0.value(1)-vv.length() ) / vv.length() > 100 ) { logger.warning("findex0 looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex0.value(0) / vv.length() < -100 ) { logger.warning("findex0 looks suspicious, where its min would result in unrealistic extrapolations"); } QDataSet fex1= extent(findex1); if ( ( fex1.value(1)-vv.length(0) ) / vv.length(0) > 100 ) { logger.warning("findex1 looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex1.value(0) / vv.length(0) < -100 ) { logger.warning("findex1 looks suspicious, where its min would result in unrealistic extrapolations"); } DDataSet result = DDataSet.create(DataSetUtil.qubeDims(findex0)); QDataSet wds= DataSetUtil.weightsDataSet(vv); QubeDataSetIterator it = new QubeDataSetIterator(findex0); int ic00=0, ic01=0, ic10=0, ic11=0; int n0 = vv.length(); int n1 = vv.length(0); double fill= -1e38; boolean hasFill= false; // Starting with v2014a_12, immodest extrapolations beyond 0.5 are no longer allowed. boolean noExtrapolate= true; while (it.hasNext()) { it.next(); double ff0 = it.getValue(findex0); double ff1 = it.getValue(findex1); if ( ff0>=0 && ff0= n0 - 0.5 ) { // would extrapolate immodestly it.putValue( result, fill ); hasFill= true; continue; } else if (ff0 < 0) { ic00 = 0; // extrapolate ic01 = 1; } else if (ff0 >= n0 - 1) { ic00 = n0 - 2; // extrapolate ic01 = n0 - 1; } if ( ff1>=0 && ff1= n1 - 0.5 ) { // would extrapolate immodestly it.putValue( result, fill ); hasFill= true; continue; } else if (ff1 < 0) { ic10 = 0; // extrapolate ic11 = 1; } else if (ff1 >= n1 - 1) { ic10 = n1 - 2; // extrapolate ic11 = n1 - 1; } double alpha0 = ff0 - ic00; double alpha1 = ff1 - ic10; double vv00 = vv.value(ic00, ic10); double vv01 = vv.value(ic00, ic11); double vv10 = vv.value(ic01, ic10); double vv11 = vv.value(ic01, ic11); double ww00= wds.value(ic00, ic10); double ww01 = wds.value(ic00, ic11); double ww10 = wds.value(ic01, ic10); double ww11 = wds.value(ic01, ic11); if ( ww00*ww01*ww10*ww11 > 0 ) { double beta0= 1-alpha0; double beta1= 1-alpha1; double value= vv00 * beta0 * beta1 + vv01 * beta0 * alpha1 + vv10 * alpha0 * beta1 + vv11 * alpha0 * alpha1; it.putValue(result, value); } else { it.putValue(result, fill ); hasFill= true; } } DataSetUtil.copyDimensionProperties( vv, result ); //allow findex0 to provide DEPEND_0 and DEPEND_1. for ( int i=0; i<=findex0.rank(); i++ ) { QDataSet depend= (QDataSet) findex0.property( "DEPEND_"+i ); if ( depend!=null ) { result.putProperty( "DEPEND_"+i, depend ); } } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } return result; } /** * interpolate values from rank 2 dataset vv using fractional indeces * in rank N findex, using bilinear interpolation. See also interpolateGrid. * * @see #findex findex, the 1-D findex command * @param vv object convertible to rank 2 dataset. * @param findex0 object convertible to rank N dataset of fractional indeces for the zeroth index. * @param findex1 object convertible to rank N dataset of fractional indeces for the first index. * @return rank N dataset */ public static QDataSet interpolate( Object vv, Object findex0, Object findex1 ) { return interpolate( dataset(vv), dataset(findex0), dataset(findex1) ); } /** * interpolate values from rank 2 dataset vv using fractional indeces * in rank N findex, using bilinear interpolation. See also interpolateGrid. * * @param vv rank 2 dataset. * @param findex0 rank N dataset of fractional indeces for the zeroth index. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @param findex1 rank N dataset of fractional indeces for the first index. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @param findex2 rank N dataset of fractional indeces for the second index. This must be dimensionless, between -0.5 and L-0.5 and is typically calculated by the findex command. * @return rank N dataset * @see #findex findex, the 1-D findex command * @see #interpolateGrid */ public static QDataSet interpolate( QDataSet vv, QDataSet findex0, QDataSet findex1, QDataSet findex2 ) { if ( vv.rank()!=3 ) throw new IllegalArgumentException("vv must be rank 3"); if ( findex0.rank()>0 && findex0.length()!=findex1.length() && findex0.length()!=findex2.length() ) { throw new IllegalArgumentException("findex0, findex1, and findex2 must have the same geometry."); } if ( !isDimensionless(findex0) ) throw new IllegalArgumentException("findex0 argument should be dimensionless, expected output from findex command."); if ( !isDimensionless(findex1) ) throw new IllegalArgumentException("findex1 argument should be dimensionless, expected output from findex command."); if ( !isDimensionless(findex2) ) throw new IllegalArgumentException("findex2 argument should be dimensionless, expected output from findex command."); if ( !DataSetUtil.checkQube(vv) ) { logger.warning("vv is not a qube"); } QDataSet fex0= extent(findex0); if ( ( fex0.value(1)-vv.length() ) / vv.length() > 100 ) { logger.warning("findex0 looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex0.value(0) / vv.length() < -100 ) { logger.warning("findex0 looks suspicious, where its min would result in unrealistic extrapolations"); } QDataSet fex1= extent(findex1); if ( ( fex1.value(1)-vv.length(0) ) / vv.length(0) > 100 ) { logger.warning("findex1 looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex1.value(0) / vv.length(0) < -100 ) { logger.warning("findex1 looks suspicious, where its min would result in unrealistic extrapolations"); } QDataSet fex2= extent(findex2); if ( ( fex2.value(1)-vv.length(0,0) ) / vv.length(0,0) > 100 ) { logger.warning("findex2 looks suspicious, where its max would result in unrealistic extrapolations"); } if ( fex2.value(0) / vv.length(0,0) < -100 ) { logger.warning("findex2 looks suspicious, where its min would result in unrealistic extrapolations"); } DDataSet result = DDataSet.create(DataSetUtil.qubeDims(findex0)); QDataSet wds= DataSetUtil.weightsDataSet(vv); QubeDataSetIterator it = new QubeDataSetIterator(findex0); int ic00=0, ic01=0, ic10=0, ic11=0, ic20=0, ic21=0; int n0 = vv.length(); int n1 = vv.length(0); int n2 = vv.length(0,0); double fill= -1e38; boolean hasFill= false; // Starting with v2014a_12, immodest extrapolations beyond 0.5 are no longer allowed. boolean noExtrapolate= true; while (it.hasNext()) { it.next(); double ff0 = it.getValue(findex0); double ff1 = it.getValue(findex1); double ff2 = it.getValue(findex2); if ( ff0>=0 && ff0= n0 - 0.5 ) { // would extrapolate immodestly it.putValue( result, fill ); hasFill= true; continue; } else if (ff0 < 0) { ic00 = 0; // extrapolate ic01 = 1; } else if (ff0 >= n0 - 1) { ic00 = n0 - 2; // extrapolate ic01 = n0 - 1; } if ( ff1>=0 && ff1= n1 - 0.5 ) { // would extrapolate immodestly it.putValue( result, fill ); hasFill= true; continue; } else if (ff1 < 0) { ic10 = 0; // extrapolate ic11 = 1; } else if (ff1 >= n1 - 1) { ic10 = n1 - 2; // extrapolate ic11 = n1 - 1; } if ( ff2>=0 && ff2= n2 - 0.5 ) { // would extrapolate immodestly it.putValue( result, fill ); hasFill= true; continue; } else if (ff2 < 0) { ic20 = 0; // extrapolate ic21 = 1; } else if (ff2 >= n2 - 1) { ic20 = n2 - 2; // extrapolate ic21 = n2 - 1; } double alpha0 = ff0 - ic00; double alpha1 = ff1 - ic10; double alpha2 = ff2 - ic20; double vv000 = vv.value( ic20, ic00, ic10); double vv001 = vv.value( ic20, ic00, ic11); double vv010 = vv.value( ic20, ic01, ic10); double vv011 = vv.value( ic20, ic01, ic11); double vv100 = vv.value( ic21, ic00, ic10); double vv101 = vv.value( ic21, ic00, ic11); double vv110 = vv.value( ic21, ic01, ic10); double vv111 = vv.value( ic21, ic01, ic11); double ww000 = wds.value( ic20, ic00, ic10); double ww001 = wds.value( ic20, ic00, ic11); double ww010 = wds.value( ic20, ic01, ic10); double ww011 = wds.value( ic20, ic01, ic11); double ww100 = wds.value( ic21, ic00, ic10); double ww101 = wds.value( ic21, ic00, ic11); double ww110 = wds.value( ic21, ic01, ic10); double ww111 = wds.value( ic21, ic01, ic11); if ( ww000*ww001*ww010*ww011 * ww100*ww101*ww110*ww111 > 0 ) { double beta0= 1-alpha0; double beta1= 1-alpha1; double beta2= 1-alpha2; double value= vv000 * beta0 * beta1 * beta2 + vv001 * beta0 * alpha1 * beta2 + vv010 * alpha0 * beta1 * beta2 + vv011 * alpha0 * alpha1 * beta2 + vv100 * beta0 * beta1 * alpha2 + vv101 * beta0 * alpha1 * alpha2 + vv110 * alpha0 * beta1 * alpha2 + vv111 * alpha0 * alpha1 * alpha2; it.putValue(result, value); } else { it.putValue(result, fill ); hasFill= true; } } DataSetUtil.copyDimensionProperties( vv, result ); //allow findex0 to provide DEPEND_0 and DEPEND_1. for ( int i=0; i<=findex0.rank(); i++ ) { QDataSet depend= (QDataSet) findex0.property( "DEPEND_"+i ); if ( depend!=null ) { result.putProperty( "DEPEND_"+i, depend ); } } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } return result; } /** * like interpolate, but the findex is recalculated when the two bracketed points are closer in the * modulo space than they would be in the linear space. * @param vv rank 1 dataset that is the data to be interpolated. (e.g. longitude from 0 to 360deg) * @param mod rank 0 dataset that is the mod of the space (e.g. 360deg), or rank 1 where the range is specified (e.g. -180 to 180). * @param findex rank N dataset of fractional indeces. This must be dimensionless and is typically calculated by the findex command. * @return the result, a rank 1 dataset with one element for each findex. * @see #interpolate(QDataSet,QDataSet) */ public static QDataSet interpolateMod( QDataSet vv, QDataSet mod, QDataSet findex ) { if ( vv.rank()!=1 ) { throw new IllegalArgumentException("vv is not rank1"); } if ( !isDimensionless(findex) ) throw new IllegalArgumentException("findex argument should be dimensionless, expected output from findex command."); QDataSet fex0= extent(findex); if ( ( fex0.value(1)-vv.length() ) / vv.length() > 100 ) { logger.warning("findex looks suspicious, where its max will result in unrealistic extrapolations"); } if ( fex0.value(0) / vv.length() < -100 ) { logger.warning("findex looks suspicious, where its min will result in unrealistic extrapolations"); } DDataSet result = DDataSet.create(DataSetUtil.qubeDims(findex)); QubeDataSetIterator it = new QubeDataSetIterator(findex); int ic0=0, ic1=0; int n = vv.length(); QDataSet wds= DataSetUtil.weightsDataSet( vv ); Number fill= (Number)wds.property(QDataSet.FILL_VALUE); double dfill; if ( fill==null ) dfill= -1e38; else dfill= fill.doubleValue(); result.putProperty( QDataSet.FILL_VALUE, dfill ); boolean hasFill= false; QDataSet wfindex= DataSetUtil.weightsDataSet(findex); wfindex= copy(wfindex); double dmod; double dmodLimit; double base; double top; if ( mod.rank()==0 ) { dmod= DataSetUtil.asDatum(mod).doubleValue( SemanticOps.getUnits(vv).getOffsetUnits() ); dmodLimit= dmod/2; base= 0; top= dmod; } else if ( mod.rank()==1 && mod.length()==2 ) { dmod= DataSetUtil.asDatum(mod.slice(1)).subtract( DataSetUtil.asDatum(mod.slice(0)) ).doubleValue( SemanticOps.getUnits(vv).getOffsetUnits() ); dmodLimit= dmod/2; vv= Ops.subtract( vv,mod.slice(0) ); base= mod.slice(0).value(); top= mod.slice(1).value(); } else { throw new IllegalArgumentException("mod must be rank 0 or rank 1 with two elements."); } boolean noExtrapolate= true; while (it.hasNext()) { it.next(); if ( it.getValue(wfindex)==0 ) { it.putValue( result, dfill ); hasFill= true; continue; } double ff = it.getValue(findex); if ( ff>=0 && ff= n - 0.5 ) { // would extrapolate immodestly it.putValue( result, dfill ); hasFill= true; continue; } else if (ff < 0) { ic0 = 0; // extrapolate ic1 = 1; } else if (ff >= n - 1) { ic0 = n - 2; // extrapolate ic1 = n - 1; } double alpha = ff - ic0; if ( wds.value(ic0)>0 && wds.value(ic1)>0 ) { double vv0 = vv.value(ic0); double vv1 = vv.value(ic1); while ( (vv1-vv0)> dmodLimit ) { vv0= vv0 + dmod; } while ( (vv0-vv1)> dmodLimit ) { vv1= vv1 + dmod; } double v= vv0 + alpha * (vv1 - vv0) + base; while ( v > top ) { v= v- dmod; } while ( v < base ) { v= v+ dmod; } it.putValue(result, v ); } else { it.putValue(result, dfill ); hasFill= true; } } DataSetUtil.copyDimensionProperties( vv, result ); //allow findex to provide DEPEND_0 and DEPEND_1. for ( int i=0; i<=findex.rank(); i++ ) { QDataSet depend= (QDataSet) findex.property( "DEPEND_"+i ); if ( depend!=null ) { result.putProperty( "DEPEND_"+i, depend ); } } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, dfill ); } return result; } /** * interpolate values from rank 2 dataset vv using fractional indeces * in rank N findex, using bilinear interpolation. Here the two rank1 * indexes form a grid and the result is rank 2. * * @see #findex findex, the 1-D findex command * @param vv rank 2 dataset. * @param findex0 rank 1 dataset of fractional indeces for the zeroth index. * @param findex1 rank 1 dataset of fractional indeces for the first index. * @return rank 2 dataset */ public static QDataSet interpolateGrid(QDataSet vv, QDataSet findex0, QDataSet findex1) { boolean slice0= false; if ( findex0.rank()==0 ) { slice0= true; findex0= new JoinDataSet(findex0); } boolean slice1= false; if ( findex1.rank()==0 ) { slice1= true; findex1= new JoinDataSet(findex1); } if ( findex0.rank()!=1 ) { throw new IllegalArgumentException("findex0 must be rank 1"); } if ( findex1.rank()!=1 ) { throw new IllegalArgumentException("findex1 must be rank 1"); } DDataSet result = DDataSet.createRank2(findex0.length(),findex1.length()); QDataSet wds= DataSetUtil.weightsDataSet(vv); int ic00=0, ic01=0, ic10=0, ic11=0; int n0 = vv.length(); int n1 = vv.length(0); double fill= -1e38; QubeDataSetIterator it = new QubeDataSetIterator(findex0); boolean noExtrapolate= true; boolean hasFill= false; while (it.hasNext()) { it.next(); QubeDataSetIterator it2= new QubeDataSetIterator(findex1); while ( it2.hasNext() ) { it2.next(); double ff0 = it.getValue(findex0); if ( ff0>=0 && ff0= n0 - 0.5 ) { // would extrapolate immodestly result.putValue( it.index(0),it2.index(0),fill ); hasFill= true; continue; } else if (ff0 < 0) { ic00 = 0; // extrapolate ic01 = 1; } else if (ff0 >= n0 - 1) { ic00 = n0 - 2; // extrapolate ic01 = n0 - 1; } double ff1 = it2.getValue(findex1); if ( ff1>=0 && ff1= n1 - 0.5 ) { // would extrapolate immodestly result.putValue( it.index(0),it2.index(0),fill ); hasFill= true; continue; } else if (ff1 < 0) { ic10 = 0; // extrapolate ic11 = 1; } else if (ff1 >= n1 - 1) { ic10 = n1 - 2; // extrapolate ic11 = n1 - 1; } double alpha0 = ff0 - ic00; double alpha1 = ff1 - ic10; double beta0= 1-alpha0; double beta1= 1-alpha1; double ww00= wds.value(ic00, ic10); double ww01 = wds.value(ic00, ic11); double ww10 = wds.value(ic01, ic10); double ww11 = wds.value(ic01, ic11); double vv00 = ( ww00==0. ) ? 0 : vv.value(ic00, ic10); double vv01 = ( ww01==0. ) ? 0 : vv.value(ic00, ic11); double vv10 = ( ww10==0. ) ? 0 : vv.value(ic01, ic10); double vv11 = ( ww11==0. ) ? 0 : vv.value(ic01, ic11); double beta0beta1 = beta0 * beta1; double beta0alpha1 = beta0 * alpha1; double alpha0beta1 = alpha0 * beta1; double alpha0alpha1 = alpha0 * alpha1; ww00 = ( beta0beta1 == 0. ) ? 1 : ww00; // ww01 = ( beta0alpha1 == 0. ) ? 1 : ww01; ww10 = ( alpha0beta1 == 0. ) ? 1 : ww10; ww11 = ( alpha0alpha1 == 0. ) ? 1 : ww11; if ( ww00*ww01*ww10*ww11 > 0 ) { double value= vv00 * beta0beta1 + vv01 * beta0alpha1 + vv10 * alpha0beta1 + vv11 * alpha0alpha1; result.putValue( it.index(0),it2.index(0),value ); } else { hasFill= true; result.putValue( it.index(0),it2.index(0),fill ); } } // second index } DataSetUtil.copyDimensionProperties( vv, result ); QDataSet depend0= (QDataSet) findex0.property(QDataSet.DEPEND_0); if ( depend0!=null ) { result.putProperty( QDataSet.DEPEND_0, depend0 ); } QDataSet depend1= (QDataSet) findex1.property(QDataSet.DEPEND_1); if ( depend1!=null ) { result.putProperty( QDataSet.DEPEND_1, depend1 ); } if ( hasFill ) { result.putProperty( QDataSet.FILL_VALUE, fill ); } QDataSet result1= result; if ( slice1 ) { result1= DataSetOps.slice1(result1,0); } if ( slice0 ) { result1= result1.slice(0); } return result1; } public static QDataSet interpolateGrid( Object x, Object y, Object z ) { return interpolateGrid( dataset(x), dataset(y), dataset(z) ); } /** * returns a dataset with zero where the data is invalid, and positive * non-zero where the data is valid. (This just returns the weights * plane of the dataset.) *
         *r= where( valid( ds ) )
         *
    * * @param ds a rank N dataset that might have FILL_VALUE, VALID_MIN or VALID_MAX * set. * @return a rank N dataset with the same geometry, with zeros where the data * is invalid and >0 where the data is valid. */ public static QDataSet valid( QDataSet ds ) { // Note because data can always contain NaNs, there is no optimization for this. return DataSetUtil.weightsDataSet(ds); } /** * assign zeros to all the values of the dataset. The * dataset must be mutable. This was used to verify Jython behavior. * @param ds */ public static void clearWritable( WritableDataSet ds ) { if ( ds.isImmutable() ) { throw new IllegalArgumentException("ds has been made immutable"); } DataSetIterator it= new QubeDataSetIterator(ds); while ( it.hasNext() ) { it.next(); it.putValue(ds,0.0); } } /** * returns 1 where the data is not NaN, Inf, etc I needed this when I was working with * the RBSP polar scatter script. Note valid should be used to check for valid data, which * also checks for NaN. * * @param ds qdataset of any rank. * @return 1 where the data is not Nan or Inf, 0 otherwise. */ public static QDataSet finite( QDataSet ds ) { ArrayDataSet result= ArrayDataSet.copy(ds); DataSetIterator it= new QubeDataSetIterator(ds); while ( it.hasNext() ) { it.next(); double d1= it.getValue(ds); it.putValue( result, Double.isInfinite(d1) || Double.isNaN(d1) ? 0. : 1. ); } return result; }; /** * smooth over the first dimension (not the zeroth). For example, * for ds[Time,Energy], this will smooth over energy. * @param ds rank 2 dataset. * @param size the boxcar size * @return smoothed dataset with the same geometry. */ public static QDataSet smooth1(QDataSet ds, int size) { switch (ds.rank()) { case 1: { throw new IllegalArgumentException("data must be rank 2 or more"); } case 2: { ArrayDataSet result= ArrayDataSet.copy(ds); for ( int i=0; iyy.length() ) size=yy.length(); if ( xx==null ) { xx= findgen(yy.length()); } DDataSet yysmooth= (DDataSet) ArrayDataSet.maybeCopy( double.class, smooth(yy,size)); int n= xx.length(); yysmooth.putProperty( QDataSet.DEPEND_0, xx ); LinFit fit; switch (yy.rank()) { case 1: fit= new LinFit( xx.trim(0,size), yy.trim(0,size) ); for ( int i=0; i m= new HashMap(); DataSetIterator it= new QubeDataSetIterator(ds); QDataSet wds= valid(ds); while ( it.hasNext() ) { it.next(); double w= it.getValue(wds); if ( w>0 ) { double d= it.getValue(ds); Integer i= m.get(d); if ( i==null ) { m.put( d, 1 ); } else { m.put( d, i+1 ); } } } int max= 0; double maxd= Double.NaN; for ( Entry vv : m.entrySet() ) { if ( vv.getValue() > max ) { max= vv.getValue(); maxd= vv.getKey(); } } DDataSet result= DDataSet.create( new int[0] ); result.putValue(maxd); DataSetUtil.copyDimensionProperties( ds,result ); return result; } public static QDataSet median( Object o ) { return median( dataset(o) ); } /** * Median function that sorts a rank N dataset and returns its median. * If lists are equal in size (even number of elements), always choose * first element of 'more' list * @param ds rank N dataset. * @return rank 0 dataset * @author mmclouth * @see #mean * @see #mode */ public static QDataSet median( QDataSet ds ) { LinkedList less= new LinkedList(); LinkedList more= new LinkedList(); QDataSet wds= valid(ds); DataSetIterator iter= new QubeDataSetIterator(ds); // sort elements into two lists while ( iter.hasNext() ) { iter.next(); if ( iter.getValue(wds)==0 ) continue; double d= iter.getValue(ds); if ( less.isEmpty() ) { less.add(d); Collections.sort(less); } else if ( less.getLast() >= d) { less.add(d); Collections.sort(less); } else { more.add(d); Collections.sort(more); } // balance the two sets, so that they are within one in size. if ( less.size()more.size() ) { double mv= less.getLast(); less.remove( mv ); more.add( mv ); Collections.sort(more); } } //assign the median based on which list is bigger //if lists are equal in size (even number of elements), always choose first element of 'more' list double ans; if ( less.size() > more.size() ) { ans = less.getLast(); } else if ( less.size()< more.size() ) { ans = more.getFirst(); } else { if ( more.isEmpty() ) { ans= Double.NaN; } else { ans = more.getFirst(); } } return DataSetUtil.asDataSet( ans, SemanticOps.getUnits(ds) ); } public static QDataSet stddev( Object o ) { return stddev( dataset(o) ); } /** * standard deviation function. * @param ds rank N dataset. * @return rank 0 dataset with units matching those of the input. * @author mmclouth */ public static QDataSet stddev( QDataSet ds ) { int n = 0; DataSetIterator iter= new QubeDataSetIterator(ds); double sum = 0; while ( iter.hasNext() ) { iter.next(); sum += iter.getValue(ds); n= n+1; } double u = sum / n; double sub; double square = 0; iter= new QubeDataSetIterator(ds); while ( iter.hasNext() ) { iter.next(); sub = ( iter.getValue(ds) - u); square += Math.pow(sub, 2); } double undersqrrt = square / (n-1); double result = sqrt(undersqrrt); //System.out.println(result); return DataSetUtil.asDataSet( result, SemanticOps.getUnits(ds).getOffsetUnits() ); } public static QDataSet variance( Object o ) { return variance( dataset(o) ); } /** * variance function is the square of the stddev. * @param ds rank 1 dataset. * @return Rank 0 QDataSet containing the variance. The result is currently dimensionless, but this will change. * @author mmclouth * @see #stddev */ public static QDataSet variance( QDataSet ds ) { return Ops.pow(stddev(ds),2); } /** * return the Mean Average Deviation (MAD) of the rank N dataset. * The result will contain the USER_PROPERTIES with a map containing * the mean and number of points. * @param ds the rank N dataset. * @return the rank 0 mean average deviation of the dataset. * @see #mean(org.das2.qds.QDataSet) */ public static QDataSet meanAverageDeviation( QDataSet ds ) { QDataSet mean= mean( ds ); double meanDouble= mean.value(); double sub; double sum = 0; int n=0; QDataSet w= DataSetUtil.weightsDataSet(ds); DataSetIterator iter= new QubeDataSetIterator(ds); while ( iter.hasNext() ) { iter.next(); if ( iter.getValue(w)>0 ) { sub = ( iter.getValue(ds) - meanDouble ); sum += sub<0 ? -sub : sub; n+= 1; } } double result = sum / n; QDataSet results= DataSetUtil.asDataSet( result, SemanticOps.getUnits(ds).getOffsetUnits() ); Map user= new HashMap<>(); user.put( "mean", mean ); user.put( "n", n ); return putProperty( results, "USER_PROPERTIES", user ); } /** * fill in the missing values by copying nearest data points. All data * in the result will be copies of elements found in the result, but no * regard is given to how far a point is shifted. This was * motivated by supporting fill in median. * @param ds * @return dataset that does not contain fill. */ public static QDataSet neighborFill( QDataSet ds ) { QDataSet w= Ops.copy( Ops.valid(ds) ); WritableDataSet wds=null; while ( Ops.reduceMin( w, 0 ).value()==0 ) { wds= copy(ds); for ( int i=1; i0 ) { wds.putValue(i,w.value(i-1)); } } for ( int i=ds.length()-2; i>=0; i-- ) { if ( w.value(i)==0 && w.value(i+1)>0 ) { wds.putValue(i,w.value(i+1)); } } w= Ops.valid(wds); } return wds==null ? ds : wds; } // private static boolean isSorted( List l ) { // if ( l.size()==0 ) return true; // Number v= (Number)l.get(0); // for ( int i=1; id.doubleValue() ) { // return false; // } // } // return true; // } // /** * 1-D median filter with a boxcar of the given size. The first size/2 * elements, and the last size/2 elements are copied from the input. * @param ds rank 1 or rank 2 dataset. Future implementations may support higher rank data. * @param size the boxcar size * @return rank 1 or rank 2 dataset. * @see #smooth(org.das2.qds.QDataSet, int) */ public static QDataSet medianFilter( QDataSet ds, int size ) { if ( ds.rank()==2 ) { ArrayDataSet res= ArrayDataSet.copy(ds); for ( int j=0; jds.length()/2 ) throw new IllegalArgumentException("size cannot be greater than ds.length()/2"); if ( size<3 ) throw new IllegalArgumentException("size cannot be less than 3"); ArrayDataSet res= ArrayDataSet.copy(ds); LinkedList less= new LinkedList(); LinkedList more= new LinkedList(); LinkedList vv= new LinkedList(); int hsize= size/2; for ( int i=0; imore.size() ) { double mv= less.getLast(); more.add( 0, mv ); less.remove( less.size()-1 ); } // if ( !isSorted(less) ) { // throw new IllegalArgumentException("less bad"); // } // if ( !isSorted(more) ) { // throw new IllegalArgumentException("more bad"); // } res.putValue(i,d); } for ( int i=hsize; imore.size() ) { res.putValue(i,less.getLast()); } else { res.putValue(i,more.getFirst()); } double rm= vv.remove(0); if ( less.getLast()>=rm ) { less.remove(rm); } else { more.remove(rm); } // balance the two sets, so that they are within one in size. if ( less.size()more.size() ) { double mv= less.getLast(); more.add( 0, mv ); less.remove( less.size()-1 ); } // if ( !isSorted(less) ) { // throw new IllegalArgumentException("less bad"); // } // if ( !isSorted(more) ) { // throw new IllegalArgumentException("more bad"); // } } for ( int i=ds.length()-hsize; i 1) { throw new IllegalArgumentException("only rank 1"); } ArrayDataSet result= ArrayDataSet.createRank1( DataSetOps.getComponentType(ds), ds.length()-1 ); QDataSet w1= DataSetUtil.weightsDataSet(ds); QDataSet dep0ds= (QDataSet) ds.property(QDataSet.DEPEND_0); DDataSet dep0= null; if ( dep0ds!=null ) { dep0= DDataSet.createRank1( ds.length()-1 ); DataSetUtil.putProperties( DataSetUtil.getProperties(dep0ds), dep0 ); } double fill= DataSetOps.suggestFillForComponentType( DataSetOps.getComponentType(ds) ); for ( int i=0; i0 && w1.value(i+1)>0 ) { result.putValue(i, ds.value(i+1) - ds.value(i) ); } else { result.putValue(i,fill); } if ( dep0ds!=null ) { assert dep0!=null; dep0.putValue(i, ( dep0ds.value(i) + ( dep0ds.value(i+1) - dep0ds.value(i) ) / 2 ) ); } } result.putProperty(QDataSet.FILL_VALUE, fill ); Units u= (Units) ds.property(QDataSet.UNITS); if ( u!=null ) result.putProperty(QDataSet.UNITS, u.getOffsetUnits() ); result.putProperty(QDataSet.NAME, null ); result.putProperty(QDataSet.MONOTONIC, null ); if ( dep0ds!=null ) { result.putProperty( QDataSet.DEPEND_0, dep0 ); } String label= (String) ds.property(QDataSet.LABEL); if ( label!=null ) result.putProperty(QDataSet.LABEL, "diff("+label+")" ); return result; } public static QDataSet diff( Object ds ) { return diff( dataset(ds) ); } /** * return an array that is the running sum of each element in the array, * starting with the value accum. * Result[i]= accum + total( ds[0:i+1] ) * @param accumDs the initial value of the running sum. Last value of Rank 0 or Rank 1 dataset is used, or may be null. * @param ds each element is added to the running sum * @return the running of each element in the array. * @see #diff(org.das2.qds.QDataSet) */ public static QDataSet accum( QDataSet accumDs, QDataSet ds ) { if (ds.rank() > 1) { throw new IllegalArgumentException("only rank 1"); } double accum=0; QDataSet accumDep0Ds; double accumDep0=0; QDataSet dep0ds= (QDataSet) ds.property(QDataSet.DEPEND_0); Units units; UnitsConverter uc= null; if ( accumDs==null ) { accumDep0= dep0ds!=null ? dep0ds.value(0) : 0; units= Units.dimensionless; } else if ( accumDs.rank()==0 ) { accum= accumDs.value(); accumDep0Ds= (QDataSet) accumDs.property( QDataSet.CONTEXT_0 ); if ( accumDep0Ds!=null ) accumDep0= accumDep0Ds.value(); else accumDep0=0; units= SemanticOps.getUnits(accumDs); Units ddUnits= SemanticOps.getUnits(ds); uc= UnitsConverter.getConverter( ddUnits, units.getOffsetUnits() ); } else if ( accumDs.rank()==1 ) { accum= accumDs.value(accumDs.length()-1); accumDep0Ds= (QDataSet) accumDs.property( QDataSet.DEPEND_0 ); if ( accumDep0Ds!=null ) accumDep0= accumDep0Ds.value(accumDs.length()); else accumDep0=0; units= SemanticOps.getUnits(accumDs); Units ddUnits= SemanticOps.getUnits(ds); uc= UnitsConverter.getConverter( ddUnits, units.getOffsetUnits() ); } else { throw new IllegalArgumentException("accumDs must be rank 0 or rank 1"); } if ( uc==UnitsConverter.IDENTITY ) uc=null; WritableDataSet result= zeros( ds ); result.putProperty( QDataSet.UNITS, units ); DDataSet dep0= null; if ( dep0ds!=null ) { dep0= DDataSet.createRank1( ds.length() ); DataSetUtil.putProperties( DataSetUtil.getProperties(dep0ds), dep0 ); } for ( int i=0; i0 ) { double t= result.value(i); if ( t>max ) max= t; result.putValue( i, max ); } else { result.putValue( i, Double.NaN ); } } return result; } /** * for each element i of ds, set the result[i] to the minimum of ds[0:(i+1)] * @param ds rank 1 dataset * @return the cumulative minimum */ public static QDataSet cumulativeMin( QDataSet ds ) { if ( ds.rank()!=1 ) throw new IllegalArgumentException("argument must be rank 1"); ArrayDataSet result= ArrayDataSet.copy(ds); QDataSet w= Ops.valid(ds); double min= Double.MAX_VALUE; for ( int i=0; i0 ) { double t= result.value(i); if ( t
         *ds1= findgen(10)
         *ds2= findgen(12)
         *print append(ds1,ds2)  ; dataSet[22] (dimensionless)
         *
    * If both datasets are ArrayDataSets and of the same component type, then * the result will have this type as well. Otherwise DDataSet is returned. * @param ds1 null or rank N dataset * @param ds2 rank N dataset with compatible geometry. * @see #concatenate(org.das2.qds.QDataSet, org.das2.qds.QDataSet) concatenate, which may do the same thing. * @return */ public static QDataSet append( QDataSet ds1, QDataSet ds2 ) { if ( ds1==null ) { if ( ds2.rank()>0 ) { return ds2; } else { ArrayDataSet result= ArrayDataSet.createRank1(ArrayDataSet.guessBackingStore(ds2),1); result.putValue( 0, ds2.value() ); DataSetUtil.copyDimensionProperties( ds2, result ); QDataSet c= (QDataSet)ds2.property(QDataSet.CONTEXT_0); if ( c!=null && c.rank()==0 ) { result.putProperty( QDataSet.DEPEND_0, append( null, c ) ); } return result; } } if ( ds1 instanceof BufferDataSet && ds2 instanceof BufferDataSet ) { Object c1= ((BufferDataSet)ds1).getType(); Object c2= ((BufferDataSet)ds2).getType(); if ( c1==c2 ) { return BufferDataSet.append( (BufferDataSet)ds1, (BufferDataSet)ds2 ); } else { Class c= double.class; return ArrayDataSet.append( ArrayDataSet.maybeCopy(c,ds1), ArrayDataSet.maybeCopy(c,ds2) ); } } else { // use append to combine the two datasets. Note append copies the data. Class c1= double.class; Class c2= double.class; if ( ds1 instanceof ArrayDataSet ) { c1= ((ArrayDataSet)ds1).getComponentType(); } if ( ds2 instanceof ArrayDataSet ) { c2= ((ArrayDataSet)ds2).getComponentType(); } Class c= double.class; if ( c1==c2 ) { c= c1; } return ArrayDataSet.append( ArrayDataSet.maybeCopy(c,ds1), ArrayDataSet.maybeCopy(c,ds2) ); } } /** * The first dataset's timetags are used to * synchronize the single dataset to common timetags. Presently, * data from dsSource will be interpolated to create data at dsTarget timetag * locations, but other methods may be introduced soon. * Ordinal units use the nearest neighbor interpolation. * @param dsTarget the dataset providing timetags, or the timetags themselves. * @param dsSource the dataset to synch up. Its timetags must be monotonically increasing and non-repeating. * @return the one dataset, synchronized. * @see #synchronize(org.das2.qds.QDataSet, org.das2.qds.QDataSet...) */ public static QDataSet synchronizeOne( QDataSet dsTarget, QDataSet dsSource ) { QDataSet ttTarget= (QDataSet) dsTarget.property( QDataSet.DEPEND_0 ); if ( ttTarget==null && DataSetUtil.isMonotonic(dsTarget) ) ttTarget= dsTarget; QDataSet ttSource= (QDataSet)dsSource.property( QDataSet.DEPEND_0 ); if ( ttSource==null ) { if ( SemanticOps.getUnits(dsSource).isConvertibleTo( SemanticOps.getUnits(ttTarget) ) ) { ttSource= dsSource; } else { throw new IllegalArgumentException("dataset sent to synchronizeOne doesn't have timetags: "+dsSource ); } } QDataSet ff; try { //Ops.extent(ttSource); //Ops.extent(ttTarget); ff= findex( ttSource, ttTarget ); // TODO: cache ff in case tt1 is the same for each dss. } catch ( IllegalArgumentException ex ) { // data is not monotonic logger.log(Level.WARNING, "when calling synchronize, DEPEND_0 was not monotonic for dsSource, using monotonic subset of points"); QDataSet dsx=Ops.monotonicSubset(dsSource); logger.log(Level.INFO, "monotonicSubset removes {0} records", (dsSource.length()-dsx.length())); dsSource= dsx; ttSource= (QDataSet)dsSource.property( QDataSet.DEPEND_0 ); ff= findex( ttSource, ttTarget ); } boolean nn= UnitsUtil.isOrdinalMeasurement( SemanticOps.getUnits(dsSource) ); if ( nn ) ff= Ops.round(ff); dsSource= interpolate( dsSource, ff ); // QDataSet tlimit= DataSetUtil.guessCadenceNew( ttSource, null ); // tlimit=null; // See sftp://jbf@nudnik.physics.uiowa.edu/home/jbf/project/rbsp/u/kris/20180808/demoBugFindexSynchronizeInline.jy // if ( tlimit!=null ) { // tlimit= Ops.multiply( tlimit, Ops.dataset(1.5) ); // Number fillValue= (Number) dsSource.property(QDataSet.FILL_VALUE); // if ( fillValue==null ) fillValue= Double.NaN; // QDataSet iceil= Ops.lesserOf( Ops.ceil(ff), ttSource.length()-1 ); // TODO: rewrite this as stream to save memory. // QDataSet tcel= Ops.applyIndex(ttSource,iceil); // QDataSet iflr= Ops.greaterOf( Ops.floor(ff), 0 ); // QDataSet tflr= Ops.applyIndex(ttSource,iflr); // QDataSet tdff= Ops.subtract( tcel,tflr ); // QDataSet r= Ops.where( Ops.gt( tdff, tlimit ) ); // dsSource= Ops.putValues( dsSource, r, fillValue ); // } return dsSource; } /** * The first dataset's timetags are used to * synchronize the second dataset to a set of common timetags. Presently, * only interpolation is used, but other methods may be introduced soon. * Note that when one of the dataset's DEPEND_0 is not monotonic, a * monotonic subset of its points will be used. * Ordinal units use the nearest neighbor interpolation. * @param ds1 the dataset providing timetags, or the timetags themselves. * @param ds the single datasets to synch up. * @return the single dataset evaluated at the other dataset's timetags. * @see #synchronizeNN(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #synchronize(org.das2.qds.QDataSet, org.das2.qds.QDataSet...) */ public static QDataSet synchronize( QDataSet ds1, QDataSet ds ) { List dss= synchronize( ds1, new QDataSet[] { ds } ); return dss.get(0); } /** * The first dataset's timetags are used to * synchronize the list of datasets to a set of common timetags. Presently, * only interpolation is used, but other methods may be introduced soon. * Note that when one of the dataset's DEPEND_0 is not monotonic, a * monotonic subset of its points will be used. * Ordinal units use the nearest neighbor interpolation. * @param dsTarget the dataset providing timetags, or the timetags themselves. * @param dsSources the N datasets to synch up. * @return a list of N datasets, synchronized * @see #synchronizeNN(org.das2.qds.QDataSet, org.das2.qds.QDataSet...) * @see #synchronize(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static List synchronize( QDataSet dsTarget, QDataSet ... dsSources ) { QDataSet ttTarget= (QDataSet) dsTarget.property( QDataSet.DEPEND_0 ); if ( ttTarget==null && DataSetUtil.isMonotonic(dsTarget) ) ttTarget= dsTarget; List result= new ArrayList<>(); int iarg=0; for ( QDataSet dsSource : dsSources ) { if ( dsSource==dsTarget ) { result.add( dsSource ); continue; } QDataSet ttSource= (QDataSet)dsSource.property( QDataSet.DEPEND_0 ); if ( ttSource==null ) { // there's a funny kludge we must do when timetags are sent. if ( SemanticOps.getUnits(dsSource).isConvertibleTo( SemanticOps.getUnits(ttTarget) ) ) { result.add( ttTarget ); continue; } else { throw new IllegalArgumentException("dataset (number "+(iarg+1) +" of "+dsSources.length + ") sent to synchronize doesn't have timetags: "+dsSource ); } } if ( ttSource.length()!=dsSource.length() ) throw new IllegalArgumentException("malformed dataset (number "+(iarg+1) +" of "+dsSources.length + ") DEPEND_0 length not correct: "+ttSource + " " + dsSource ); QDataSet ff; try { Ops.extent(ttSource); Ops.extent(ttTarget); ff= findex( ttSource, ttTarget ); // TODO: cache ff in case tt1 is the same for each dss. } catch ( IllegalArgumentException ex ) { // data is not monotonic logger.log(Level.WARNING, "when calling synchronize, DEPEND_0 was not monotonic for dss argument #{0}, using monotonic subset of points", iarg); QDataSet dsx=Ops.monotonicSubset(dsSource); logger.log(Level.INFO, "monotonicSubset removes {0} records", (dsSource.length()-dsx.length())); dsSource= dsx; ttSource= (QDataSet)dsSource.property( QDataSet.DEPEND_0 ); ff= findex( ttSource, ttTarget ); } boolean nn= UnitsUtil.isOrdinalMeasurement( SemanticOps.getUnits(dsSource) ); if ( nn ) ff= Ops.round(ff); dsSource= interpolate( dsSource, ff ); QDataSet tlimit= DataSetUtil.guessCadenceNew( ttSource, null ); if ( tlimit!=null ) { tlimit= Ops.multiply( tlimit, Ops.dataset(1.5) ); Number fillValue= (Number) dsSource.property(QDataSet.FILL_VALUE); if ( fillValue==null ) fillValue= Double.NaN; QDataSet iceil= Ops.lesserOf( Ops.ceil(ff), ttSource.length()-1 ); // TODO: rewrite this as stream to save memory. QDataSet tcel= Ops.applyIndex(ttSource,iceil); QDataSet iflr= Ops.greaterOf( Ops.floor(ff), 0 ); QDataSet tflr= Ops.applyIndex(ttSource,iflr); QDataSet tdff= Ops.subtract( tcel,tflr ); QDataSet r= Ops.where( Ops.gt( tdff, tlimit ) ); dsSource= Ops.putValues( dsSource, r, fillValue ); } result.add( dsSource ); iarg++; } return result; } /** * The first dataset's timetags are used to * synchronize the second dataset to a set of common timetags, using * nearest neighbor interpolation. * Note that when one of the dataset's DEPEND_0 is not monotonic, a * monotonic subset of its points will be used. * Ordinal units use the nearest neighbor interpolation. * @param ds1 the dataset providing timetags, or the timetags themselves. * @param ds the single datasets to synch up. * @return the single dataset evaluated at the other dataset's timetags. * @see #synchronize(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #synchronizeNN(org.das2.qds.QDataSet, org.das2.qds.QDataSet...) */ public static QDataSet synchronizeNN( QDataSet ds1, QDataSet ds ) { List dss= synchronizeNN( ds1, new QDataSet[] { ds } ); return dss.get(0); } /** * The first dataset's timetags are used to * synchronize the list of datasets to a set of common timetags, using * nearest neighbor interpolation. * Note that when one of the dataset's DEPEND_0 is not monotonic, a * monotonic subset of its points will be used. * @param ds1 the dataset providing timetags, or the timetags themselves. * @param dss the N datasets, each either rank 1 or rank 2. * @return a list of N datasets, synchronized * @see #synchronize(org.das2.qds.QDataSet, org.das2.qds.QDataSet...) * @see #synchronizeNN(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static List synchronizeNN( QDataSet ds1, QDataSet ... dss ) { QDataSet tt= (QDataSet) ds1.property( QDataSet.DEPEND_0 ); if ( tt==null && DataSetUtil.isMonotonic(ds1) ) tt= ds1; List result= new ArrayList<>(); int iarg=0; for ( QDataSet ds : dss ) { if ( ds==ds1 ) { result.add( ds ); continue; } QDataSet tt1= (QDataSet)ds.property( QDataSet.DEPEND_0 ); QDataSet ff; try { ff= findex( tt1, tt ); } catch ( IllegalArgumentException ex ) { // data is not monotonic logger.log(Level.WARNING, "when calling synchronize, DEPEND_0 was not monotonic for dss argument #{0}, using monotonic subset of points", iarg); QDataSet dsx=Ops.monotonicSubset(ds); logger.log(Level.INFO, "monotonicSubset removes {0} records", (ds.length()-dsx.length())); ds= dsx; tt1= (QDataSet)ds.property( QDataSet.DEPEND_0 ); ff= findex( tt1, tt ); } QDataSet iff= Ops.round(ff); ds= interpolate( ds, iff ); QDataSet tlimit= DataSetUtil.guessCadenceNew( tt1, null ); if ( tlimit!=null ) { tlimit= Ops.multiply( tlimit, Ops.dataset(1.5) ); Number fillValue= (Number) ds.property(QDataSet.FILL_VALUE); if ( fillValue==null ) fillValue= Double.NaN; QDataSet tcel= Ops.applyIndex(tt1,Ops.ceil(ff),fillValue); QDataSet tflr= Ops.applyIndex(tt1,Ops.floor(ff),fillValue); QDataSet tdff= Ops.subtract( tcel,tflr ); QDataSet r= Ops.where( Ops.gt( tdff, tlimit ) ); ds= Ops.putValues( ds, r, fillValue ); } result.add( ds ); iarg++; } return result; } /** * convert the dataset to the target units * @param ds the original dataset. * @param u units of the new dataset * @return a new dataset with all the same properties but with the new units. */ public static QDataSet convertUnitsTo( QDataSet ds, Units u ) { UnitsConverter uc= Units.getConverter( SemanticOps.getUnits(ds), u ); if ( uc==UnitsConverter.IDENTITY ) { return ds; } ArrayDataSet ds2; Class c= ArrayDataSet.guessBackingStore( ds ); if ( c==float.class || c==double.class ) { ds2= ArrayDataSet.copy(ds); } else { ds2= DDataSet.copy(ds); } for ( int i=0; i0 ) { iter.putValue( ds2, uc.convert( iter.getValue(ds) ) ); } else { iter.putValue( ds2, -1e38 ); } } ds2.putProperty( QDataSet.UNITS, u ); ds2.putProperty( QDataSet.FILL_VALUE, -1e38 ); ds2.putProperty( QDataSet.VALID_MIN, null ); ds2.putProperty( QDataSet.VALID_MAX, null ); return ds2; } /** * convert the datumRange to the given units, which must be convertible. * @param dr the datum range, e.g. '5 to 50 MHz' * @param u the new units. e.g. 'Hz' * @return DatumRange in the new units, e.g. '5000000 to 50000000 Hz' * @throws InconvertibleUnitsException */ public static DatumRange convertUnitsTo( DatumRange dr, Units u ) { return dr.convertTo(u); } /** * convert the datum to the given units, which must be convertible. * @param d the datum, e.g. '5 MHz' * @param u the new units, e.g. 'Hz' * @return Datum in the new units, e.g. '5000000 Hz' * @throws InconvertibleUnitsException */ public static Datum convertUnitsTo( Datum d, Units u ) { return d.convertTo(u); } /** * flatten a rank N dataset, though currently rank 4 is not supported. * The result for rank 2 is an n,3 dataset of [x,y,z], or if there are no tags, just [z]. * The last index will be the dependent variable, and the first indeces will * be the independent variables sorted by dimension. * @see org.das2.qds.DataSetOps#flattenRank2(org.das2.qds.QDataSet) * @see #grid(org.das2.qds.QDataSet) * @see #flattenWaveform(org.das2.qds.QDataSet) * @param ds the rank N dataset (note only Rank 2 is supported for now). * @return rank 2 dataset bundle */ public static QDataSet flatten( QDataSet ds ) { switch (ds.rank()) { case 0: { DDataSet result= DDataSet.createRank2(1,1); result.putValue(0,0,ds.value()); DataSetUtil.copyDimensionProperties( ds, result ); return result; } case 1: QDataSet dep0= (QDataSet) ds.property( QDataSet.DEPEND_0 ); if ( dep0!=null ) { return bundle(dep0,ds); } else { return bundle(ds); } case 2: QDataSet result= DataSetOps.flattenRank2(ds); if ( result.rank()==1 ) { return reform( ds, new int [] { result.length(), 1 } ); } else { return result; } case 3: return DataSetOps.flattenRank3(ds); default: throw new UnsupportedOperationException("only rank 0,1,and 2 supported"); } } /** * flatten a rank 2 dataset where the y depend variable is just an offset from the xtag. * Note the new DEPEND_0 may have different units from ds.property(DEPEND_0). * @param ds rank 2 waveform with tags for DEPEND_0 and offsets for DEPEND_1 * @return rank 1 waveform * @see #flatten(org.das2.qds.QDataSet) * @see DataSetOps#flattenWaveform(org.das2.qds.QDataSet) */ public static QDataSet flattenWaveform( QDataSet ds ) { return DataSetOps.flattenWaveform(ds); } /** * Opposite of the flatten function, takes rank 2 bundle (x,y,z) and * makes a table from it z(x,y). This presumes that the rank 1 X and * Y data contain repeating elements for the rows and columns of the grid. * @param ds rank 2 bundle of X,Y, and Z data. * @return rank 2 table. * @see #flatten(org.das2.qds.QDataSet) */ public static QDataSet grid( QDataSet ds ) { return DataSetOps.grid(ds); } /** * This finds sweeps of Y and interpolates T->Y->Z to make a regular * spectrogram T,yTags->Z[T,yTags] * This function was once known as "LvT" because it was used to create a spectrogram * of Flux(Time,Lshell) by interpolating along sweeps. * @param t the rank 1 x values (often time) * @param y the rank 1 y values (for example, L) * @param z the rank 1 z values at each y. * @param ytags the rank 1 y tags for the result. * @return the rank 2 spectrogram. */ public static QDataSet gridIrregularY( QDataSet t, QDataSet y, QDataSet z, QDataSet ytags ) { QDataSet result= LSpec.rebin( link( t, y ), z, ytags, 0 ); return result; } /** * create a labels dataset for tagging rows of a dataset. If the context * has been used already, including "default", then the EnumerationUnit * for the data will be preserved. labels(["red","green","blue"],"default") * will always return an equivalent (and comparable) result during a session. * * Example: * dep1= labels( ["X","Y","Z"], "GSM" ) * @param labels array of string labels * @param context the namespace for the labels, to provide control over String→int mapping. * @return rank 1 QDataSet * @deprecated use labelsDataSet * @see #labelsDataset(java.lang.String[]) */ public static QDataSet labels(String[] labels, String context) { EnumerationUnits u; try { Units uu= Units.getByName(context); if ( uu!=null && uu instanceof EnumerationUnits ) { u= (EnumerationUnits)uu; } else { u = new EnumerationUnits(context); } } catch ( IllegalArgumentException ex ) { u = new EnumerationUnits(context); } SDataSet result = SDataSet.createRank1(labels.length); for (int i = 0; i < labels.length; i++) { Datum d = u.createDatum(labels[i]); result.putValue(i, d.doubleValue(u)); } result.putProperty(QDataSet.UNITS, u); return result; } /** * create a labels dataset for tagging rows of a dataset. * Example: * dep1= labels( ["red","greed","blue"] ) * @param labels array of string labels * @return rank 1 QDataSet * @deprecated use labelsDataSet * @see #labelsDataset(java.lang.String[]) */ public static QDataSet labels(String[] labels) { return labels(labels, "default"); } /** * create a labels dataset for tagging rows of a dataset. If the context * has been used already, including "default", then the EnumerationUnit * for the data will be preserved. labels(["red","green","blue"],"default") * will always return an equivalent (and comparable) result during a session. * * Example: * dep1= labels( ["X","Y","Z"], "GSM" ) * @param labels array of string labels * @param context the namespace for the labels, to provide control over String→int mapping. * @return rank 1 QDataSet */ public static QDataSet labelsDataset(String[] labels, String context) { EnumerationUnits u; try { Units uu= Units.getByName(context); if ( uu!=null && uu instanceof EnumerationUnits ) { u= (EnumerationUnits)uu; } else { u = new EnumerationUnits(context); } } catch ( IllegalArgumentException ex ) { u = new EnumerationUnits(context); } SDataSet result = SDataSet.createRank1(labels.length); for (int i = 0; i < labels.length; i++) { Datum d = u.createDatum(labels[i]); result.putValue(i, d.doubleValue(u)); } result.putProperty(QDataSet.UNITS, u); return result; } /** * create a labels dataset for tagging rows of a dataset. * Example: array of string labels * dep1= labels( ["red","greed","blue"] ) * @param labels * @return rank 1 QDataSet */ public static QDataSet labelsDataset(String[] labels) { return labelsDataset( labels, "default" ); } /** * create a dataset of RGB colors. The output is * int(red)*256*256 + int(green)*256 + int(blue) * with the units of Units.rgbColor * @param red the red component, from 0 to 255 * @param green the green component, from 0 to 255 * @param blue the blue component, from 0 to 255 * @return the rgb encoded colors. */ public static QDataSet rgbColorDataset( QDataSet red, QDataSet green, QDataSet blue ) { QDataSet[] operands= new QDataSet[2]; CoerceUtil.coerce( red, green, false, operands ); red= operands[0]; green= operands[1]; CoerceUtil.coerce( green, blue, false, operands ); blue= operands[1]; int[] qube= DataSetUtil.qubeDims(blue); IDataSet z= IDataSet.create(qube); QubeDataSetIterator iter= new QubeDataSetIterator(z); while ( iter.hasNext() ) { iter.next(); int r1= (int) iter.getValue(red); int g1= (int) iter.getValue(green); int b1= (int) iter.getValue(blue); iter.putValue( z, r1*256*256 + g1 * 256 + b1 ); } z.putProperty( QDataSet.UNITS, Units.rgbColor ); return z; } /** * returns the number of elements in each index. E.g: *
         * ds= zeros(3,4)
         * print size(ds) # returns "3,4"
         * 
    * Note datasets need not have the same number of elements in each record. * This is often the case however, and a "qube" dataset has this property. * @param ds a qube dataset. * @return the array containing number of elements in each index. * @throws IllegalArgumentException if the dataset is not a qube. */ public static int[] size( QDataSet ds ) { if ( ds.rank()>1 && ds.length()>1 ) { if ( ds.length(0)!=ds.length(ds.length()-1) ) { throw new IllegalArgumentException("dataset is not a qube, so the length of each record differs."); } } return DataSetUtil.qubeDims(ds); } /** * return the color encoded as one of:
      *
    • "red" or "RED" or X11 color names like "LightPink" *
    • #FF0000 *
    • 255,0,0 or 1.0,0,0 *
    * * @param sval the string representation * @return the color * @throws IllegalArgumentException if the color cannot be parsed. */ public static Color colorFromString(String sval) { Color c; try { if (sval.contains(",")) { String[] ss = sval.split(",", -2); if (ss.length == 3) { if (sval.contains(".")) { float rr = Float.parseFloat(ss[0].trim()); float gg = Float.parseFloat(ss[1].trim()); float bb = Float.parseFloat(ss[2].trim()); c = new Color(rr, gg, bb, 1.0f); } else { int rr = Integer.parseInt(ss[0].trim()); int gg = Integer.parseInt(ss[1].trim()); int bb = Integer.parseInt(ss[2].trim()); c = new Color(rr, gg, bb, 255); } } else { throw new IllegalArgumentException("color identified in string should be name like 'red' or r,g,b triple like '255,0,0'"); } } else { c= ColorUtil.decodeColor(sval); } } catch (NumberFormatException ex) { c = (Color) ClassMap.getEnumElement(Color.class, sval); if ( c==null ) { throw new IllegalArgumentException("color identified in string should be name like 'red' or r,g,b triple like '255,0,0'"); } } return c; } /** * TODO: I suspect this is not up to spec. See DataSetOps.sliceProperties * See reform, the only function that uses this. * @param removeDim * @param ds * @param result */ private static void sliceProperties(int removeDim, QDataSet ds, MutablePropertyDataSet result) { size(ds); for (int i = 0; i < result.rank(); i++) { if (i >= removeDim) { result.putProperty("DEPEND_" + i, ds.property("DEPEND_" + (i + 1))); } else { result.putProperty("DEPEND_" + i, ds.property("DEPEND_" + i)); } } } /** * slice each dimension in one call, so that chaining isn't required to slice multiple dimensions at once. * @param ds the dataset * @param args varargs list of integers that are slice indeces, or "" or ":" to mean don't slice * @return the dataset with slices performed. */ public static QDataSet slices( QDataSet ds, Object ... args ) { int cdim=0; // to keep track of if we can use native slice int sdim=0; // to keep track of number of slices offset. QDataSet result= ds; StringBuilder docStr= new StringBuilder(); for ( int i=0; i newQube = new ArrayList<>(); //int[] dimMap = new int[dsqube.length]; // maps from new dataset to old index boolean foundDim = false; int removeDim = -1; for (int i = 0; i < dsqube.length; i++) { if (dsqube[i] != 1 || foundDim) { newQube.add(dsqube[i]); //dimMap[i] = foundDim ? i + 1 : i; } else { foundDim = true; removeDim = i; } } if (foundDim == false) { return ds; } int[] qube = new int[newQube.size()]; for (int i = 0; i < newQube.size(); i++) { qube[i] = newQube.get(i); } MutablePropertyDataSet result = (MutablePropertyDataSet) reform(ds, qube); //DANGER sliceProperties(removeDim, ds, result); return result; } /** * allow reform record-by-record, which comes up often. * @param ds rank 2 or greater dataset of length nrec. * @param nrec number of records in ds * @param qube length nn array with the new geometry of each record. * @return ds of rank nn+1. */ public static QDataSet reform(QDataSet ds, int nrec, int[] qube) { if ( nrec!=ds.length() ) throw new IllegalArgumentException("rec should be equal to the number of records in ds"); int[] newArray= new int[qube.length+1]; newArray[0]= nrec; System.arraycopy( qube, 0, newArray, 1, qube.length ); return reform( ds, newArray ); } /** * change the dimensionality of the elements of the QUBE dataset. For example, * convert [1,2,3,4,5,6] to [[1,2],[3,4],[5,6]]. * @param ds dataset * @param qube the dimensions of the result dataset. * @return a new dataset with the specified dimensions, and the properties (e.g. UNITS) of the input dataset. */ public static QDataSet reform(QDataSet ds, int[] qube) { QubeDataSetIterator it0 = new QubeDataSetIterator(ds); DDataSet result = DDataSet.create(qube); QubeDataSetIterator it1 = new QubeDataSetIterator(result); while (it0.hasNext() && it1.hasNext() ) { it0.next(); it1.next(); double v = it0.getValue(ds); it1.putValue(result, v); } if ( it0.hasNext() != it1.hasNext() ) { throw new IllegalArgumentException("reform fails because different number of elements: "+it0+ " -> " + it1); } DataSetUtil.copyDimensionProperties( ds, result ); return result; } public static QDataSet reform( Object ds, int[] qube) { return reform( dataset(ds),qube ); } /** * bundle the dataset, making an initial bundle, adding a bundle dimension. * @param ds a rank N dataset * @return rank N+1 bundle dataset */ public static QDataSet bundle( QDataSet ds ) { return bundle( null, ds ); } /** * bundle the two datasets, adding if necessary a bundle dimension. This * will try to bundle on the second dimension, unlike join. This will also * isolate the semantics of bundle dimensions as it's introduced. Note the * first argument can be null in order to simplify loops in client code. * @param ds1 null, rank N dataset with n records or rank N+1 bundle dataset * @param ds2 rank N dataset. * @return rank N+1 bundle dataset, presently with mutable properties. * @see #join(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet bundle( QDataSet ds1, QDataSet ds2 ) { if ( ds1==null && ds2==null ) { throw new NullPointerException("both ds1 and ds2 are null"); } else if ( ds1==null ) { BundleDataSet ds; if ( ds2.rank()==0 ) { ds= BundleDataSet.createRank0Bundle(); } else { ds = new BundleDataSet( ds2.rank()+1 ); } ds.bundle(ds2); QDataSet dep0= (QDataSet) ds2.property(QDataSet.DEPEND_0); if ( dep0!=null ) ds.putProperty( QDataSet.DEPEND_0, dep0 ); return ds; } else if ( ds2==null ) { throw new NullPointerException("ds2 is null while ds1 ("+ds1+") is not null."); } else if ( ds1.rank() == ds2.rank() ) { // findbugs fails to realize that this must be okay. if ( ds1.rank()>1 ) { TailBundleDataSet ds= new TailBundleDataSet( ds1.rank() + 1 ); ds.bundle(ds1); ds.bundle(ds2); for ( int k=0; kk ) { String depName= "DEPEND_"+k; QDataSet d1= (QDataSet)ds1.property(depName); QDataSet d2= (QDataSet)ds2.property(depName); if ( d1!=null && d2!=null && Ops.equivalent( d1, d2 ) ) { ds.putProperty( depName, d1 ); } } } return ds; } else { BundleDataSet ds= new BundleDataSet( ds1.rank() + 1 ); ds.bundle(ds1); ds.bundle(ds2); return ds; } } else if ( ds1 instanceof BundleDataSet && ds1.rank()-1==ds2.rank() ) { ((BundleDataSet)ds1).bundle(ds2); return ds1; } else if ( ds1 instanceof TailBundleDataSet && ds1.rank()-1==ds2.rank() ) { ((TailBundleDataSet)ds1).bundle(ds2); return ds1; } else if ( ds1.rank()-1==ds2.rank() ) { switch (ds1.rank()) { case 3: { TailBundleDataSet bds= new TailBundleDataSet(ds1.rank()); for ( int i=0; i=2 ) { return zds.property(QDataSet.BUNDLE_1)!=null; } else { return false; } } /** * possibly sort the data where the DEPEND_0 tags are * monotonically increasing. If the data is already monotonic, * then nothing is done to the data. * @param ds the dataset * @return the dataset, sorted if necessary. * @see DataSetUtil#isMonotonic */ public static QDataSet ensureMonotonic( QDataSet ds ) { if ( ds.length()==0 ) return ds; if ( SemanticOps.isJoin(ds) ) { QDataSet ds1= ds.slice(0); QDataSet dep0= (QDataSet)ds1.property(QDataSet.DEPEND_0); if (Boolean.TRUE.equals(dep0.property(QDataSet.MONOTONIC))) { // avoid showing message when data is in fact monotonic. return ds; } else { logger.warning("ensure monotonic does not support joins."); return ds; } } QDataSet dep0= (QDataSet) ds.property(QDataSet.DEPEND_0); if ( dep0==null ) { return ds; } logger.entering( "org.das2.qds.Ops","ensureMonotonic"); if ( DataSetUtil.isMonotonic(dep0) ) { return ds; } QDataSet sort= Ops.sort(dep0); if ( ds instanceof WritableDataSet ) { if ( ((WritableDataSet)ds).isImmutable() ) { ds= Ops.copy(ds); } DataSetOps.applyIndexInSitu( ((WritableDataSet)ds), sort ); } else { ds= Ops.copy(ds); DataSetOps.applyIndexInSitu( ((WritableDataSet)ds), sort ); } dep0= (QDataSet)ds.property(QDataSet.DEPEND_0); ((WritableDataSet)dep0).putProperty( QDataSet.MONOTONIC, Boolean.TRUE ); logger.exiting( "org.das2.qds.Ops","ensureMonotonic" ); return ds; } /** * Return data where the DEPEND_0 tags are * monotonically increasing and non repeating. Instead of sorting the data, simply replace repeat records with * a fill record. * @param ds the dataset * @return the dataset, sorted if necessary. * TODO: It's surprising that monotonic doesn't imply non-repeating, and this really needs to be revisited. * @see DataSetUtil#isMonotonicAndIncreasingQuick */ public static QDataSet ensureMonotonicAndIncreasingWithFill( QDataSet ds ) { if ( ds.length()==0 ) return ds; if ( SemanticOps.isJoin(ds) ) { QDataSet ds1= ds.slice(0); QDataSet dep0= (QDataSet)ds1.property(QDataSet.DEPEND_0); if (Boolean.TRUE.equals(dep0.property(QDataSet.MONOTONIC))) { // avoid showing message when data is in fact monotonic. return ds; } else { logger.warning("ensure monotonic does not support joins."); return ds; } } QDataSet dep0= (QDataSet) ds.property(QDataSet.DEPEND_0); if ( dep0==null ) { return ds; } logger.entering( "org.das2.qds.Ops","ensureMonotonicWithFill"); if ( DataSetUtil.isMonotonicAndIncreasing(dep0) ) { return ds; } QDataSet wds= DataSetUtil.weightsDataSet(dep0); int i; for ( i=0; i
         *plot(X,Y) shows a plot of Y(X),
         *link(X,Y) returns the dataset Y(X).
         *
    * @param x rank 1 dataset * @param y rank 1 or rank 2 bundle dataset * @return rank 1 dataset with DEPEND_0 set to x. */ public static QDataSet link( QDataSet x, QDataSet y ) { if (y.rank() == 1) { ArrayDataSet yds= ArrayDataSet.copy(y); yds.putProperty(QDataSet.DEPEND_0, x); List problems= new ArrayList(); if ( !DataSetUtil.validate(yds, problems ) ) { throw new IllegalArgumentException( problems.get(0) ); } else { return yds; } } else { ArrayDataSet zds = ArrayDataSet.copy(y); if (x != null) { zds.putProperty(QDataSet.DEPEND_0, x); } List problems= new ArrayList(); if ( !DataSetUtil.validate(zds, problems ) ) { throw new IllegalArgumentException( problems.get(0) ); } else { return zds; } } } /** * link is the fundamental operator where we declare that one * dataset is dependent on another. For example link(x,y,z) creates * a new dataset where z is the dependent variable of the independent * variables x and y. link is like the plot command, but doesn't plot. For example *
         *   plot(x,y,z) shows a plot of Z(X,Y),
         *   link(x,y,z) returns the dataset Z(X,Y).
         *
    * Note if z is a rank 1 dataset, then a bundle dataset Nx3 is returned, and names are assigned to the datasets * * @param x rank 1 dataset * @param y rank 1 dataset * @param z rank 1 or 2 dataset. * @return rank 1 or 2 dataset with DEPEND_0 and DEPEND_1 set to X and Y. */ public static QDataSet link( QDataSet x, QDataSet y, QDataSet z ) { if (z.rank() == 1) { String xname= (String) x.property(QDataSet.NAME); String yname= (String) y.property(QDataSet.NAME); String zname= (String) z.property(QDataSet.NAME); if ( xname==null ) xname="data0"; if ( yname==null ) yname="data1"; if ( zname==null ) zname="data2"; QDataSet result= bundle( x, y, z ); BundleDataSet.BundleDescriptor bds= (BundleDescriptor) result.property(QDataSet.BUNDLE_1); bds.putProperty( "CONTEXT_0", 2, xname+","+yname ); // note this is a string, not a QDataSet. This is sloppy, but probably okay for now. bds.putProperty( QDataSet.NAME, 0, xname ); bds.putProperty( QDataSet.NAME, 1, yname ); bds.putProperty( QDataSet.NAME, 2, zname ); // DDataSet yds = DDataSet.copy(y); // yds.putProperty(QDataSet.DEPEND_0, x); // yds.putProperty(QDataSet.PLANE_0, z); List problems= new ArrayList(); if ( DataSetUtil.validate(result, problems ) ) { return result; } else { throw new IllegalArgumentException( problems.get(0) ); } } if ( z.rank()==2 && y.rank()==1 && isBundle(z) ) { QDataSet z1= DataSetOps.slice1(z,z.length(0)-1); return link( x, y, z1 ); } if ( z.rank()==2 && x.rank()==2 && y.rank()==2 ) { z= flatten(z); z= slice1( z, z.length(0)-1 ); y= flatten(y); y= slice1( y, y.length(0)-1 ); x= flatten(x); x= slice1( x, x.length(0)-1 ); return link( x, y, z ); } MutablePropertyDataSet zds = DataSetOps.makePropertiesMutable(z); if (x != null || zds.property(QDataSet.DEPEND_0)!=null ) { zds.putProperty(QDataSet.DEPEND_0, x); } if (y != null || zds.property(QDataSet.DEPEND_1)!=null ) { zds.putProperty(QDataSet.DEPEND_1, y); } List problems= new ArrayList(); if ( !DataSetUtil.validate(zds, problems ) ) { throw new IllegalArgumentException( problems.get(0) ); } else { return zds; } } /** * like bundle, but declare the last dataset is dependent on the first three. * * @param d0 rank 1 dataset * @param d1 rank 1 dataset * @param d2 rank 1 dataset * @param z rank 1 or rank 3 dataset. * @return rank 2 bundle when z is rank 1, or a rank 3 dataset when z is rank 3. */ public static QDataSet link( QDataSet d0, QDataSet d1, QDataSet d2, QDataSet z ) { if (z.rank() == 1) { String a1name= (String) d0.property(QDataSet.NAME); String a2name= (String) d1.property(QDataSet.NAME); String a3name= (String) d2.property(QDataSet.NAME); String a4name= (String) z.property(QDataSet.NAME); if ( a1name==null ) a1name="data0"; if ( a2name==null ) a2name="data1"; if ( a3name==null ) a3name="data2"; if ( a4name==null ) a4name="data3"; QDataSet result= bundle( bundle( bundle( d0, d1 ), d2), z ); BundleDataSet.BundleDescriptor bds= (BundleDescriptor) result.property(QDataSet.BUNDLE_1); bds.putProperty( QDataSet.NAME, 0, a1name ); bds.putProperty( QDataSet.NAME, 1, a2name ); bds.putProperty( QDataSet.NAME, 2, a3name ); bds.putProperty( QDataSet.NAME, 3, a4name ); List problems= new ArrayList(); if ( DataSetUtil.validate(result, problems ) ) { return result; } else { throw new IllegalArgumentException( problems.get(0) ); } } else { ArrayDataSet zds = ArrayDataSet.copy(z); if (d0 != null) { zds.putProperty(QDataSet.DEPEND_0, d0); } if (d1 != null ) { zds.putProperty(QDataSet.DEPEND_1, d1); } if (d2 != null ) { zds.putProperty(QDataSet.DEPEND_2, d2); } List problems= new ArrayList(); if ( !DataSetUtil.validate(zds, problems ) ) { throw new IllegalArgumentException( problems.get(0) ); } else { return zds; } } } /** * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @param x object which can be converted to a QDataSet * @param y object which can be converted to a QDataSet * @return the dataset * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet link( Object x, Object y ) { return link( dataset(x), dataset(y) ); } /** * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @param x object which can be converted to a QDataSet * @param y object which can be converted to a QDataSet * @param z object which can be converted to a QDataSet * @return the dataset * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet link( Object x, Object y, Object z ) { return link( dataset(x), dataset(y), dataset(z) ); } /** * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @param d0 object which can be converted to a QDataSet * @param d1 object which can be converted to a QDataSet * @param d2 object which can be converted to a QDataSet * @param z object which can be converted to a QDataSet * @return the dataset * @see #link(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet link( Object d0, Object d1, Object d2, Object z ) { return link( dataset(d0), dataset(d1), dataset(d2), dataset(z) ); } /** * declare that the dataset is a dependent parameter of an independent parameter. * This isolates the QDataSet semantics, and verifies correctness. See also link(x,y). * @param ds the dataset * @param dim dimension to declare dependence: 0,1,2. * @param dep the independent dataset. * @return the dataset, which may be a copy if the data was not mutable. */ public static MutablePropertyDataSet dependsOn( QDataSet ds, int dim, QDataSet dep ) { MutablePropertyDataSet mds= DataSetOps.makePropertiesMutable(ds); switch (dim) { case 0: if ( dep!=null && ds.length()!=dep.length() ) { throw new IllegalArgumentException(String.format("ds.length()!=dep.length() (%d!=%d)",ds.length(),dep.length())); } mds.putProperty( QDataSet.DEPEND_0, dep ); break; case 1: if ( dep!=null && ds.length(0)!=dep.length() ) throw new IllegalArgumentException(String.format("ds.length(0)!=dep.length() (%d!=%d)",ds.length(0),dep.length())); mds.putProperty( QDataSet.DEPEND_1, dep ); break; case 2: if ( dep!=null && ds.length(0,0)!=dep.length() ) throw new IllegalArgumentException(String.format("ds.length(0,0)!=dep.length() (%d!=%d)",ds.length(0,0),dep.length())); mds.putProperty( QDataSet.DEPEND_2, dep ); break; case 3: if ( dep!=null && ds.length(0,0,0)!=dep.length() ) throw new IllegalArgumentException(String.format("ds.length(0,0,0)!=dep.length() (%d!=%d)",ds.length(0,0,0),dep.length())); mds.putProperty( QDataSet.DEPEND_3, dep ); break; default: break; } return mds; } /** * This one-argument join was used in a script that George had, so * it must have been a function at some point. * @param ds2 rank N dataset * @return rank N+1 dataset * @deprecated use join(null,ds2) instead. */ public static QDataSet join( QDataSet ds2 ) { return join(null,ds2); } /** * Join two rank N datasets to make a rank N+1 dataset, with the first dimension * having two elements. This is the anti-slice operator. * * If the first dataset is rank N+1 JoinDataset and the other is rank N, then the rank N dataset is * added to the rank N+1 dataset. * * This is underimplemented right now, and can only join two rank N datasets or if the first dataset is the result of a join. * * @param ds1 rank N dataset, or null * @param ds2 rank N dataset * @see #slices * @see #concatenate * @return rank N+1 dataset */ public static QDataSet join(QDataSet ds1, QDataSet ds2) { if ( ds1==null && ds2==null ) throw new NullPointerException("both ds1 and ds2 are null"); if ( ds2==null ) throw new NullPointerException("ds2 is null"); if ( ds1==null ) { JoinDataSet ds= new JoinDataSet( ds2.rank()+1 ); ds.join(ds2); return ds; } else if (ds1.rank() == ds2.rank()) { JoinDataSet ds= new JoinDataSet( ds1.rank()+1 ); ds.join(ds1); ds.join(ds2); return ds; } else if ( ds1 instanceof JoinDataSet && ds1.rank()-1==ds2.rank() ) { ((JoinDataSet)ds1).join(ds2); return ds1; } else { throw new IllegalArgumentException("not supported yet"); } } /** * Merge the two sorted rank N datasets, using their DEPEND_0 datasets, into one rank N dataset. * If neither dataset has DEPEND_0, then this will use the datasets themselves. When ds1 occurs "before" ds2, then this * is the same as concatenate. * When there is a collision where two data points are coincident, use ds1[j]. This is fuzzy, based on the depend_0 cadence of ds1. * When ds1 is null (or None), use ds2. * Thanks to: http://stackoverflow.com/questions/5958169/how-to-merge-two-sorted-arrays-into-a-sorted-array * @param ds1 rank N dataset, or null. * @param ds2 rank N dataset * @return dataset of rank N with elements interleaved. * @see #concatenate(org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet merge( QDataSet ds1, QDataSet ds2 ) { if ( ds1==null ) return ds2; JoinDataSet result= new JoinDataSet(ds1.rank()); QDataSet dep01= (QDataSet)ds1.property(QDataSet.DEPEND_0); QDataSet dep02= (QDataSet)ds2.property(QDataSet.DEPEND_0); if ( dep01==null ) { if ( dep02==null ) { dep01= ds1; dep02= ds2; } else { throw new IllegalArgumentException("ds1 is missing DEPEND_0"); } } else { if ( dep02==null ) { throw new IllegalArgumentException("ds2 is missing DEPEND_0"); } } //there's a bug in result.join where it doesn't look for CONTEXT_0, otherwise this would work without dep0result. DataSetBuilder dep0result= new DataSetBuilder(1,ds1.length()+ds2.length()); int n1= dep01.length(); int n2= dep02.length(); int i1= 0; int i2= 0; QDataSet cadenceDep01= DataSetUtil.guessCadenceNew( dep01, null ); Units dep0u= SemanticOps.getUnits(dep01); if ( cadenceDep01==null ) cadenceDep01= DataSetUtil.asDataSet(0,dep0u); cadenceDep01= Ops.divide(cadenceDep01,2); while (i1 < n1 && i2 < n2 ) { if ( Ops.lt( Ops.abs( Ops.subtract( dep01.slice(i1), dep02.slice(i2) ) ), cadenceDep01 ).value()!=0 ) { dep0result.putValue( -1, DataSetUtil.asDatum( dep01.slice(i1) ) ); result.join( ds1.slice(i1++) ); i2++; } else if ( Ops.le( dep01.slice(i1), dep02.slice(i2) ).value()>0 ) { dep0result.putValue( -1, DataSetUtil.asDatum( dep01.slice(i1) ) ); result.join( ds1.slice(i1++) ); } else { dep0result.putValue( -1, DataSetUtil.asDatum( dep02.slice(i2) ) ); result.join( ds2.slice(i2++) ); } dep0result.nextRecord(); } while ( i1(i+1) && result.charAt(i)=='<' && result.charAt(i+1)=='=' ) { result.replace( i, i+2, "le" ); i+=1; continue; } if ( result.length()>(i+1) && result.charAt(i)=='>' && result.charAt(i+1)=='=' ) { result.replace( i, i+2, "ge" ); i+=1; continue; } if ( result.length()>(i+1) && result.charAt(i)=='<' && result.charAt(i+1)=='>' ) { result.replace( i, i+2, "ne" ); i+=1; continue; } if ( result.length()>(i+1) && result.charAt(i)=='!' && result.charAt(i+1)=='=' ) { result.replace( i, i+2, "ne" ); i+=1; continue; } if ( result.charAt(i)=='=' ) { result.replace( i, i+1, "eq" ); i+=1; continue; } if ( result.charAt(i)=='>' ) { result.replace( i, i+1, "gt" ); i+=1; continue; } if ( result.charAt(i)=='<' ) { result.replace( i, i+1, "lt" ); i+=1; continue; } if ( !Character.isJavaIdentifierPart( result.charAt(i) ) ) result.replace( i, i+1, "_" ); } return result.toString(); } /** * transpose the rank 2 dataset. result[i,j]= ds[j,i] for each i,j. * @param ds rank 2 dataset * @return rank 2 dataset */ public static QDataSet transpose(QDataSet ds) { return DDataSet.copy(new TransposeRank2DataSet(ds)); } public static QDataSet transpose( Object ds ) { return transpose( dataset(ds) ); } /** * returns true iff the dataset values are equivalent. Note this * may promote rank, etc. If the two datasets have enumerations, then we * create datums and check .equals. This does not check TITLE, etc, * just that the units and values are equal. * @param ds1 the first dataset * @param ds2 the second dataset * @return true if the dataset values are equivalent. */ public static boolean equivalent( QDataSet ds1, QDataSet ds2 ) { if ( ds1!=null && ds1==ds2 ) return true; if ( ds1==null ) throw new NullPointerException("ds1 is null"); if ( ds2==null ) throw new NullPointerException("ds2 is null"); Units u1= SemanticOps.getUnits(ds1); Units u2= SemanticOps.getUnits(ds2); if ( u1!=u2 && u1 instanceof EnumerationUnits && u2 instanceof EnumerationUnits ) { if ( !CoerceUtil.equalGeom( ds1, ds2 ) ) return false; QubeDataSetIterator it= new QubeDataSetIterator(ds1); while ( it.hasNext() ) { it.next(); try { if ( !u1.createDatum(it.getValue(ds1)).toString().equals( u2.createDatum(it.getValue(ds2) ).toString() ) ) return false; } catch ( IndexOutOfBoundsException ex ) { return false; // } } return true; } else { if ( !u1.isConvertibleTo(u2) ) return false; if ( !CoerceUtil.equalGeom( ds1, ds2 ) ) return false; QDataSet eq= eq( ds1, ds2 ); QubeDataSetIterator it= new QubeDataSetIterator(eq); while ( it.hasNext() ) { it.next(); if ( it.getValue(eq)==0 ) return false; } return true; } } public static boolean equivalent( Object ds1, Object ds2 ) { return equivalent( dataset(ds1), dataset(ds2) ); } /** * returns the number of physical dimensions of a dataset. *
      *
    • JOIN, BINS do not increase dataset dimensionality. *
    • DEPEND increases dimensionality by dimensionality of DEPEND ds. *
    • BUNDLE increases dimensionality by N, where N is the number of bundled datasets. *
    * Note this includes implicit dimensions taken by the primary dataset: *
      *
    • Z(time,freq)→3 *
    • rand(20,20)→3 *
    • B_gsm(20,[X,Y,Z])→4 *
    * @param dss the dataset * @return the number of dimensions occupied by the data. */ public static int dimensionCount( QDataSet dss ) { return dimensionCount( dss, false ); } /** * returns the number of physical dimensions of a dataset. * @param dss the dataset * @param noImplicit when a dataset is the independent parameter, then there are no implicit dimensions. * @return the number of dimensions occupied by the data. */ private static int dimensionCount( QDataSet dss, boolean noImplicit ) { int dim=1; QDataSet ds= dss; while ( ds.rank()>0 ) { if ( ds.property("JOIN_0")!=null ) { } else if ( ds.property("BINS_0")!=null ) { } else if ( ds.property("DEPEND_0")!=null ) { dim+= dimensionCount( (QDataSet) ds.property("DEPEND_0"), true ); } else if ( ds.property("BUNDLE_0")!=null ) { dim+= ((QDataSet)ds.property("BUNDLE_0")).length(); } else { if ( !noImplicit ) dim+= 1; // implicity undeclared dimensions add one dimension } if ( ds.length()>0 ) { if ( ds.rank()>QDataSet.MAX_RANK ) { ds= ds.slice(0); } else { ds= DataSetOps.slice0(ds, 0); } } else { return 1; } } return dim; } /** * returns the number of physical dimensions of the object when * interpreted as a dataset. * @param dss the object that can be coerced into a dataset. * @return the number of dimensions occupied by the data. * @see #dataset(java.lang.Object) */ public static int dimensionCount( Object dss ) { return dimensionCount( dataset(dss) ); } /** * Experiment with multi-threaded FFTPower function. This breaks up the task into four independent tasks * that can be run in parallel. * @param ds rank 2 dataset ds(N,M) with M>len * @param len the number of elements to have in each fft. * @param mon a ProgressMonitor for the process * @return rank 2 FFT spectrum */ public static QDataSet fftPowerMultiThread(final QDataSet ds, final int len, final ProgressMonitor mon ) { final ArrayList mons = new ArrayList<>(); final QDataSet[] out = new QDataSet[4]; final int length = ds.length(); mons.add( new NullProgressMonitor() ); mons.add( new NullProgressMonitor() ); mons.add( new NullProgressMonitor() ); mons.add( new NullProgressMonitor() ); Runnable run1 = new Runnable() { @Override public void run() { try { out[0] = Ops.fftPower(ds.trim(0, length/ 4), len, mons.get(0)); //ScriptContext.plot( 1, out1 ); } catch (Exception ex) { ex.printStackTrace(); } } }; Runnable run2 = new Runnable() { @Override public void run() { try { out[1] = Ops.fftPower(ds.trim(length / 4, (length * 2) / 4), len, mons.get(1)); //ScriptContext.plot( 2, out2 ); } catch (Exception ex) { ex.printStackTrace(); } } }; Runnable run3 = new Runnable() { @Override public void run() { try { out[2] = Ops.fftPower(ds.trim((length * 2) / 4, (length * 3) / 4), len, mons.get(2)); //ScriptContext.plot( 3, out3 ); } catch (Exception ex) { ex.printStackTrace(); } } }; Runnable run4 = new Runnable() { @Override public void run() { try { out[3] = Ops.fftPower(ds.trim((length * 3) / 4, length), len, mons.get(3)); //ScriptContext.plot( 4, out4 ); } catch (Exception ex) { ex.printStackTrace(); } } }; new Thread(run1).start(); new Thread(run2).start(); new Thread(run3).start(); new Thread(run4).start(); while ( !(mons.get(0)).isFinished() || !(mons.get(1)).isFinished() || !(mons.get(2)).isFinished() || !(mons.get(3)).isFinished()) { try { Thread.sleep(50); } catch ( InterruptedException ex ) { } } QDataSet concat= null; for ( QDataSet out1 : out ) { concat= Ops.concatenate( concat, out1 ); } return concat; } /** * Point with placeholder for index. */ private static class PointWeightedInt extends ProGAL.geom3d.PointWeighted { int idx; PointWeightedInt( double x, double y, double z, double w, int idx ) { super( x,y,z,w ); this.idx= idx; } public String toString() { return String.valueOf(idx); } } // /** // * return the volume of a 4-point tetrahededron. // * @param p the first point. The tetr is shifted so that this corner is at the origin. // * @param a tetr corner // * @param b tetr corner // * @param c tetr corner // * @return the volume // */ // private static double volume( ProGAL.geom3d.Point p, ProGAL.geom3d.Point a, ProGAL.geom3d.Point b, ProGAL.geom3d.Point c ) { // a= a.subtract(p); // b= b.subtract(p); // c= c.subtract(p); // return volume(a,b,c); // } /** * return the volume of the 4-point tetrahedron with one point * at the origin, and points a,b,c are the points not at the origin. * See http://www.hpl.hp.com/techreports/2002/HPL-2002-320.pdf, page 4 * @param a tetrahedron corner * @param b tetrahedron corner * @param c tetrahedron corner * @return the volume */ private static double volume( ProGAL.geom3d.Point a, ProGAL.geom3d.Point b, ProGAL.geom3d.Point c ) { return Math.abs( a.x() * ( b.y() * c.z() - b.z() * c.y() ) - a.y() * ( b.x() * c.z() - b.z() * c.x() ) + a.z() * ( b.x() * c.y() - b.y() * c.x() ) ) / 6; } /** * return the volume of the 3-point triangle in 2 dimensions. * See http://www.mathopenref.com/coordtrianglearea.html * @param a 2-d point corner * @param b 2-d point corner * @param c 2-d point corner * @return the volume */ private static double area( ProGAL.geom2d.Point a, ProGAL.geom2d.Point b, ProGAL.geom2d.Point c ) { return Math.abs( a.x() * ( b.y()- c.y() ) + b.x() * ( c.y() - a.y() ) + c.x() * ( a.y() - b.y() ) ) / 2; } /** * Point with placeholder for index. */ private static class VertexInt extends ProGAL.geom2d.delaunay.Vertex { int idx; VertexInt( double x, double y, int idx ) { super( x,y ); this.idx= idx; } public String toString() { return String.valueOf(idx); } } /** * 3-D interpolation performed by tesselating the space (with 4-point * tetrahedra) and doing interpolation. * NOTE: this does not check units. * @param xyz rank 2 bundle of x,y,z data. * @param data rank 1 dependent data, a function of x,y,z. * @param xinterp the x locations to interpolate, rank 0, 1, or 2. * @param yinterp the y locations to interpolate * @param zinterp the z locations to interpolate * @return the interpolated data. */ public static QDataSet buckshotInterpolate( QDataSet xyz, QDataSet data, QDataSet xinterp, QDataSet yinterp, QDataSet zinterp ) { if ( xyz.rank()!=2 || xyz.length(0)!=3 ) { throw new IllegalArgumentException("xyz must be rank 2 bundle of x,y,z positions"); } if ( xinterp.rank()>2 ) { throw new IllegalArgumentException("xinterp rank can be 0,1, or 2"); } else if ( xinterp.rank()==2 ) { int n= DataSetUtil.totalLength(xinterp); xinterp= reform(xinterp, new int[] { n } ); yinterp= reform(yinterp, new int[] { n } ); zinterp= reform(zinterp, new int[] { n } ); } else if ( xinterp.rank()==0 ) { xinterp= reform( xinterp, new int[] {1} ); yinterp= reform( yinterp, new int[] {1} ); zinterp= reform( zinterp, new int[] {1} ); } QDataSet xx= Ops.unbundle( xyz, 0 ); QDataSet yy= Ops.unbundle( xyz, 1 ); QDataSet zz= Ops.unbundle( xyz, 2 ); Units u= SemanticOps.getUnits(xyz); // rescale xx,yy,zz so that all are from 0.1 to 0.9. QDataSet xx1= Ops.rescale( append(xx,xinterp), dataset(u.createDatum(0.1)), dataset(u.createDatum(0.9)) ); QDataSet yy1= Ops.rescale( append(yy,yinterp), dataset(u.createDatum(0.1)), dataset(u.createDatum(0.9)) ); QDataSet zz1= Ops.rescale( append(zz,zinterp), dataset(u.createDatum(0.1)), dataset(u.createDatum(0.9)) ); int inn= xx.length(); xx= xx1.trim(0,inn); yy= yy1.trim(0,inn); zz= zz1.trim(0,inn); int l= xx1.length(); xinterp= xx1.trim(inn,l); yinterp= yy1.trim(inn,l); zinterp= zz1.trim(inn,l); List points= new ArrayList(xyz.length()); for ( int i=0; i2 ) { throw new IllegalArgumentException("xinterp rank can be 0,1, or 2"); } else if ( xinterp.rank()==2 ) { int n= DataSetUtil.totalLength(xinterp); xinterp= reform(xinterp, new int[] { n } ); yinterp= reform(yinterp, new int[] { n } ); } else if ( xinterp.rank()==0 ) { xinterp= reform( xinterp, new int[] {1} ); yinterp= reform( yinterp, new int[] {1} ); } QDataSet xx= Ops.unbundle( xy, 0 ); QDataSet yy= Ops.unbundle( xy, 1 ); Units u= SemanticOps.getUnits(xy); boolean rescale= true; if ( rescale ) { // rescale xx,yy,zz so that all are from 0.1 to 0.9. QDataSet xx1= Ops.rescale( append(xx,xinterp), dataset(u.createDatum(0.1)), dataset(u.createDatum(0.9)) ); QDataSet yy1= Ops.rescale( append(yy,yinterp), dataset(u.createDatum(0.1)), dataset(u.createDatum(0.9)) ); int inn= xx.length(); xx= xx1.trim(0,inn); yy= yy1.trim(0,inn); int l= xx1.length(); xinterp= xx1.trim(inn,l); yinterp= yy1.trim(inn,l); } List points= new ArrayList(xy.length()); for ( int i=0; iw[1] ) { // if ( w[0]>w[2] ) { // d= data.value( abci[0].idx ); // } else { // d= data.value( abci[2].idx ); // } // } else { // if ( w[1]>w[2] ) { // d= data.value( abci[1].idx ); // } else { // d= data.value( abci[2].idx ); // } // } d= data.value( abci[0].idx ) * w[0] + data.value( abci[1].idx ) * w[1] + data.value( abci[2].idx ) * w[2]; dsi.putValue( result,d ); } DataSetUtil.copyDimensionProperties( data, result ); if ( !hasFill ) { result.putProperty( QDataSet.FILL_VALUE, null ); } result.putProperty( "TRIANGULATION", rt ); return result; }; /** * return the gamma function for numbers greater than 0. This will * soon work for any number where gamma has a result (Apache Math v3 is needed for this). * @param n * @return */ public static final double gamma( double n ) { double logGamma= org.apache.commons.math.special.Gamma.logGamma(n); return Math.exp(logGamma); } /** * return the gamma function for numbers greater than 0. This will * soon work for any number where gamma has a result (Apache Math v3 is needed for this). * @param n * @return */ public static final QDataSet gamma( Object n ) { QDataSet nn= dataset(n); WritableDataSet result= zeros(nn.length()); for ( int i=0; i