package org.das2.qds.math.fft.jnt; import org.das2.qds.math.fft.ComplexArray; /** Abstract Class representing FFT's of real, double precision data. * Concrete classes are typically named RealDoubleFFT_method, implement the * FFT using some particular method. *
* The physical layout of the mathematical data d[i] in the array data is as follows: *
* d[i] = data[i0 + stride*i] ** The FFT (D[i]) of real data (d[i]) is complex, but restricted by symmetry: *
* D[n-i] = conj(D[i]) ** It turns out that there are still n `independent' values, so the transformation * can still be carried out in-place. * However, each Real FFT method tends to leave the real and imaginary parts * distributed in the data array in its own unique arrangment. *
* You must consult the documentation for the specific classes implementing * RealDoubleFFT for the details. * Note, however, that each class's backtransform and inverse methods understand * thier own unique ordering of the transformed result and can invert it correctly. * * @author Bruce R. Miller bruce.miller@nist.gov * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. */ public abstract class RealDoubleFFT { int n; /** Create an FFT for transforming n points of real, double precision data. */ public RealDoubleFFT(int n){ if (n <= 0) throw new IllegalArgumentException("The transform length must be >=0 : "+n); this.n = n; } protected void checkData(double data[], int i0, int stride){ if (i0 < 0) throw new IllegalArgumentException("The offset must be >=0 : "+i0); if (stride < 1) throw new IllegalArgumentException("The stride must be >=1 : "+stride); if (i0+stride*(n-1)+1 > data.length) throw new IllegalArgumentException("The data array is too small for "+n+":"+ "i0="+i0+" stride="+stride+ " data.length="+data.length); } /** Compute the Fast Fourier Transform of data leaving the result in data. */ public void transform ( ComplexArray.Double data) { transform (data, 0,1); } /** Compute the Fast Fourier Transform of data leaving the result in data. */ public abstract void transform ( ComplexArray.Double data, int i0, int stride); /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/ public void backtransform (ComplexArray.Double data) { backtransform(data,0,1); } /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/ public abstract void backtransform (ComplexArray.Double data, int i0, int stride); /** Return the normalization factor. * Multiply the elements of the backtransform'ed data to get the normalized inverse.*/ public double normalization(){ return 1.0/((double) n); } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse(ComplexArray.Double data) { inverse(data,0,1); } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse (ComplexArray.Double data, int i0, int stride) { backtransform(data, i0, stride); /* normalize inverse fft with 1/n */ double norm = normalization(); for (int i = 0; i < n; i++) { data.setReal( i, data.getReal(i) * norm ); data.setImag( i, data.getImag(i) * norm ); } } }