/*
* BinAverage.java
*
* Created on May 30, 2007, 8:56 AM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*/
package org.das2.qds.util;
import java.util.Arrays;
import org.das2.datum.Units;
import org.das2.datum.UnitsConverter;
import org.das2.qds.ArrayDataSet;
import org.das2.qds.DDataSet;
import org.das2.qds.DataSetOps;
import org.das2.qds.QDataSet;
import org.das2.qds.DataSetUtil;
import org.das2.qds.IDataSet;
import org.das2.qds.SemanticOps;
import org.das2.qds.WeightsDataSet;
import org.das2.qds.ops.Ops;
import static org.das2.qds.util.BinAverage.rebin;
/**
* utility class providing methods for bin averaging.
* @author jbf
*/
public class BinAverage {
private BinAverage() {
}
/**
* returns a dataset with tags specified by newTags0. Data from ds
* are averaged together when they fall into the same bin. Note the result
* will have the property WEIGHTS.
*
* @param ds a rank 1 dataset, no fill
* @param newTags0 a rank 1 tags dataset, that must be MONOTONIC.
* @return rank 1 dataset with DEPEND_0 = newTags.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #binAverage(QDataSet, QDataSet )
*/
public static DDataSet rebin(QDataSet ds, QDataSet newTags0) {
return binAverage( ds, newTags0 );
}
/**
* returns a dataset with tags specified by newTags0. Data from ds
* are averaged together when they fall into the same bin. Note the result
* will have the property WEIGHTS.
*
* @param ds a rank 1 dataset, no fill
* @param newTags0 a rank 1 tags dataset, that must be MONOTONIC.
* @return rank 1 dataset with DEPEND_0 = newTags.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #binAverage(QDataSet, QDataSet )
* @see #binAverage(QDataSet, QDataSet, QDataSet )
*/
public static DDataSet binAverage(QDataSet ds, QDataSet newTags0 ) {
QDataSet dstags = (QDataSet) ds.property(QDataSet.DEPEND_0);
QDataSet wds = DataSetUtil.weightsDataSet(ds);
double fill = ((Number) wds.property(QDataSet.FILL_VALUE)).doubleValue();
DDataSet result = DDataSet.createRank1(newTags0.length());
DDataSet weights = DDataSet.createRank1(newTags0.length());
int ibin = -1;
for (int i = 0; i < ds.length(); i++) {
ibin = DataSetUtil.closest(newTags0, dstags.value(i), ibin);
double d = ds.value(i);
double w = wds.value(i);
if ( w>0 ) {
double s = result.value(ibin);
result.putValue(ibin, s + d * w);
double n = weights.value(ibin);
weights.putValue(ibin, n + w);
}
}
for (int i = 0; i < result.length(); i++) {
if (weights.value(i) > 0) {
result.putValue(i, result.value(i) / weights.value(i));
} else {
result.putValue(i, fill);
}
}
weights.putProperty(QDataSet.DEPEND_0,newTags0);
result.putProperty(QDataSet.DEPEND_0, newTags0);
result.putProperty(QDataSet.FILL_VALUE,fill);
result.putProperty(QDataSet.WEIGHTS,weights);
return result;
}
/**
* returns a dataset with tags specified by newTags.
* @param ds a rank 2 dataset. If it's a bundle, then rebinBundle is called.
* @param newTags0 rank 1 monotonic dataset
* @param newTags1 rank 1 monotonic dataset
* @return rank 2 dataset with newTags0 for the DEPEND_0 tags, newTags1 for the DEPEND_1 tags. WEIGHTS property contains the weights.
* @see #rebin(org.das2.qds.QDataSet, int, int)
* @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @deprecated see binAverage
* @see #binAverage(QDataSet, QDataSet, QDataSet )
*/
public static DDataSet rebin(QDataSet ds, QDataSet newTags0, QDataSet newTags1) {
return binAverage( ds, newTags0, newTags1 );
}
/**
* returns a dataset with tags specified by newTags, where linear averages
* of the points in each bin are returned.
* @param ds a rank 2 dataset. If it's a bundle, then rebinBundle is called.
* @param newTags0 rank 1 monotonic dataset
* @param newTags1 rank 1 monotonic dataset
* @return rank 2 dataset with newTags0 for the DEPEND_0 tags, newTags1 for the DEPEND_1 tags. WEIGHTS property contains the weights.
* @see #rebin(org.das2.qds.QDataSet, int, int)
* @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #binAverage(org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #binAverage(org.das2.qds.QDataSet )
*/
public static DDataSet binAverage(QDataSet ds, QDataSet newTags0, QDataSet newTags1) {
if (ds.rank() != 2) {
throw new IllegalArgumentException("ds must be rank2");
}
if ( SemanticOps.isBundle(ds) ) {
return rebinBundle( ds, newTags0, newTags1 );
}
QDataSet dstags0 = (QDataSet) ds.property(QDataSet.DEPEND_0);
if ( dstags0==null ) {
throw new IllegalArgumentException("expected ds to have DEPEND_0");
}
QDataSet wds = DataSetUtil.weightsDataSet(ds);
double fill = ((Number) wds.property(QDataSet.FILL_VALUE)).doubleValue();
DDataSet result = DDataSet.createRank2(newTags0.length(), newTags1.length());
DDataSet weights = DDataSet.createRank2(newTags0.length(), newTags1.length());
QDataSet ibin1CacheDs = null;
int[] ibins1 = null;
int ibin0 = -1;
for (int i = 0; i < ds.length(); i++) {
QDataSet ds1= ds.slice(i);
QDataSet wds1= wds.slice(i);
ibin0 = DataSetUtil.closest(newTags0, dstags0.value(i), ibin0);
//QDataSet dstags1 = (QDataSet) ds.property(QDataSet.DEPEND_1, i);
QDataSet dstags1 = (QDataSet) ds1.property(QDataSet.DEPEND_0);
if (dstags1 != ibin1CacheDs) {
ibins1 = new int[dstags1.length()];
Arrays.fill(ibins1, -1);
for (int j = 0; j < dstags1.length(); j++) {
ibins1[j] = DataSetUtil.closest(newTags1, dstags1.value(j), ibins1[j]);
}
ibin1CacheDs = dstags1;
}
for (int j = 0; j < dstags1.length(); j++) {
int ibin1 = ibins1[j];
double d = ds1.value(j);
double w = wds1.value(j);
if ( w>0 ) {
double s = result.value(ibin0, ibin1);
result.putValue(ibin0, ibin1, s + w * d);
double n = weights.value(ibin0, ibin1);
weights.putValue(ibin0, ibin1, n + w);
}
}
}
for (int i = 0; i < result.length(); i++) {
for (int j = 0; j < result.length(i); j++) {
if (weights.value(i, j) > 0) {
result.putValue(i, j, result.value(i, j) / weights.value(i, j));
} else {
result.putValue(i, j, fill);
}
}
}
weights.putProperty(QDataSet.DEPEND_0, newTags0);
weights.putProperty(QDataSet.DEPEND_1, newTags1);
result.putProperty(QDataSet.DEPEND_0, newTags0);
result.putProperty(QDataSet.DEPEND_1, newTags1);
result.putProperty(QDataSet.FILL_VALUE, fill );
result.putProperty(QDataSet.WEIGHTS, weights);
return result;
}
/**
* return true if the data is linearly spaced with the given base and offset.
* @param dep0
* @param xscal
* @param xbase
* @return true if the data is linearly spaced with the given base and offset.
*/
private static boolean isLinearlySpaced( QDataSet dep0, double xscal, double xbase ) {
int nx= dep0.length();
for ( int i=0; i0 ) { // accumulate.
UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 );
UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 );
UnitsConverter zuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(2), dep2 );
for ( int ids=0; ids0 ) {
double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0));
double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1));
double z= zuc.convert( zlog ? Math.log10( ds.value(ids,2) ) : ds.value(ids,2));
double f= ds.value(ids,3);
int i= (int)( ( x-xbase ) / xscal );
int j= (int)( ( y-ybase ) / yscal );
int k= (int)( ( z-zbase ) / zscal );
if ( i<0 || j<0 || k<0 ) continue;
if ( i>=nx || j>=ny || k>=nz ) continue;
sresult.putValue( i, j, k, f + sresult.value( i, j, k ) );
nresult.putValue( i, j, k, w + nresult.value( i, j, k ) );
}
}
}
double fill= -1e31; // normalize. The weights will be in the WEIGHTS property
for ( int i=0; i0 ) {
sresult.putValue( i,j,k, sresult.value(i,j,k)/n );
} else {
sresult.putValue( i,j,k, fill );
}
}
}
}
DataSetUtil.copyDimensionProperties( ds, sresult );
nresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
nresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
nresult.putProperty( QDataSet.DEPEND_2, dep2_0 );
sresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
sresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
sresult.putProperty( QDataSet.DEPEND_2, dep2_0 );
sresult.putProperty( QDataSet.FILL_VALUE, fill );
sresult.putProperty( QDataSet.WEIGHTS, nresult );
sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" );
return sresult;
}
/**
* takes rank 2 bundle (x,y,z) and averages it into table z(x,y). This is
* similar to what happens in the spectrogram routine.
* @param ds rank 2 bundle(x,y,z)
* @param dep0 the rank 1 depend0 for the result, which must be uniformly spaced.
* @param dep1 the rank 1 depend1 for the result, which must be uniformly spaced.
* @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @deprecated see binAverageBundle
* @see #binAverageBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
*/
public static DDataSet rebinBundle( QDataSet ds, QDataSet dep0, QDataSet dep1 ) {
return binAverageBundle( ds, dep0, dep1 );
}
/**
* takes rank 2 bundle (x,y,z) and averages it into table z(x,y). This is
* similar to what happens in the spectrogram routine.
* @param ds rank 2 bundle(x,y,z)
* @param dep0 the rank 1 depend0 for the result, which must be uniform in log or linear space.
* @param dep1 the rank 1 depend1 for the result, which must be uniform in log or linear space.
* @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see https://github.com/autoplot/dev/blob/master/demos/2021/20210529/demoBinAverageBundle.jy
*/
public static DDataSet binAverageBundle(QDataSet ds, QDataSet dep0, QDataSet dep1) {
DDataSet sresult = DDataSet.createRank2(dep0.length(), dep1.length());
IDataSet nresult = IDataSet.createRank2(dep0.length(), dep1.length());
QDataSet wds = DataSetUtil.weightsDataSet(DataSetOps.slice1(ds, 2));
QDataSet dep0_0 = dep0;
QDataSet dep1_0 = dep1;
boolean xlog = false;
double xscal = dep0.value(1) - dep0.value(0);
double xbase = dep0.value(0) - (xscal / 2);
int nx = dep0.length();
if (!isLinearlySpaced(dep0, xscal, xbase)) {
xscal = Math.log10(dep0.value(1) / dep0.value(0));
xbase = Math.log10(xbase);
dep0 = Ops.log10(dep0);
if (!isLinearlySpaced(dep0, xscal, xbase)) {
throw new IllegalArgumentException("dep0 must be uniformly spaced.");
} else {
xlog = true;
}
}
boolean ylog = false;
double yscal = dep1.value(1) - dep1.value(0);
double ybase = dep1.value(0) - (yscal / 2);
int ny = dep1.length();
if (!isLinearlySpaced(dep1, yscal, ybase)) {
yscal = Math.log10( dep1.value(1) / dep1.value(0) );
ybase = Math.log10( dep1.value(0) ) - (yscal / 2);
dep1 = Ops.log10(dep1);
if (!isLinearlySpaced(dep1, yscal, ybase)) {
isLinearlySpaced(dep1, yscal, ybase);
throw new IllegalArgumentException("dep1 must be uniformly spaced.");
} else {
ylog = true;
}
}
// accumulate
if ( ds.length()>0 ) {
UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 );
if ( xuc==UnitsConverter.LOOSE_IDENTITY && SemanticOps.getUnits(ds.slice(0).slice(0))==Units.degrees ) {
throw new IllegalArgumentException("no units provided when one dataset's units are degrees, unidentified units could be radians or degrees.");
}
UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 );
for ( int ids=0; ids0 ) {
double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0) );
double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1) );
double z= ds.value(ids,2);
int i= (int)( ( x-xbase ) / xscal );
int j= (int)( ( y-ybase ) / yscal );
if ( i<0 || j<0 ) continue;
if ( i>=nx || j>=ny ) continue;
sresult.putValue( i, j, z + sresult.value( i, j ) );
nresult.putValue( i, j, w + nresult.value( i, j ) );
}
}
}
// normalize
double fill= -1e31;
for ( int i=0; i0 ) {
sresult.putValue( i,j, sresult.value(i,j)/n );
} else {
sresult.putValue( i,j, fill );
}
}
}
DataSetUtil.copyDimensionProperties( ds, sresult );
nresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
nresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
sresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
sresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
sresult.putProperty( QDataSet.FILL_VALUE, fill );
sresult.putProperty( QDataSet.WEIGHTS, nresult );
sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" );
return sresult;
}
/**
* takes rank 2 bundle (x,y,z) and averages in table z(x,y) and computes the
* mean average deviation in each bin.
* @param ads rank 2 grid of averages
* @param ds rank 2 bundle(x,y,z)
* @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see Ops#meanAverageDeviation(org.das2.qds.QDataSet)
* @see https://github.com/autoplot/dev/blob/master/demos/2021/20210529/demoBinMeanAverageDeviation.jy
*/
public static DDataSet binMeanAverageDeviation( QDataSet ads, QDataSet ds ) {
if ( ads.rank()!=2 ) {
throw new IllegalArgumentException("ads must be rank 2");
}
if ( ds.length(0)!=3 ) {
throw new IllegalArgumentException("ds must be ds[n,3]");
}
QDataSet dep0= (QDataSet)ads.property(QDataSet.DEPEND_0);
QDataSet dep1= (QDataSet)ads.property(QDataSet.DEPEND_1);
DDataSet sresult = DDataSet.createRank2(dep0.length(), dep1.length());
IDataSet nresult = IDataSet.createRank2(dep0.length(), dep1.length());
QDataSet wds = DataSetUtil.weightsDataSet(DataSetOps.slice1(ds, 2));
QDataSet dep0_0 = dep0;
QDataSet dep1_0 = dep1;
boolean xlog = false;
double xscal = dep0.value(1) - dep0.value(0);
double xbase = dep0.value(0) - (xscal / 2);
int nx = dep0.length();
if (!isLinearlySpaced(dep0, xscal, xbase)) {
xscal = Math.log10(dep0.value(1) / dep0.value(0));
xbase = Math.log10(xbase);
dep0 = Ops.log10(dep0);
if (!isLinearlySpaced(dep0, xscal, xbase)) {
throw new IllegalArgumentException("dep0 must be uniformly spaced.");
} else {
xlog = true;
}
}
boolean ylog = false;
double yscal = dep1.value(1) - dep1.value(0);
double ybase = dep1.value(0) - (yscal / 2);
int ny = dep1.length();
if (!isLinearlySpaced(dep1, yscal, ybase)) {
yscal = Math.log10(dep1.value(1) / dep1.value(0));
ybase = Math.log10(ybase);
dep1 = Ops.log10(dep1);
if (!isLinearlySpaced(dep1, yscal, ybase)) {
isLinearlySpaced(dep1, yscal, ybase);
throw new IllegalArgumentException("dep1 must be uniformly spaced.");
} else {
ylog = true;
}
}
if ( ds.length()>0 ) {
UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 );
UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 );
for ( int ids=0; ids0 ) {
double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0) );
double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1) );
int i= (int)( ( x-xbase ) / xscal );
int j= (int)( ( y-ybase ) / yscal );
if ( i<0 || j<0 ) continue;
if ( i>=nx || j>=ny ) continue;
double z= Math.abs( ds.value(ids,2) - ads.value(i,j) );
sresult.putValue( i, j, z + sresult.value( i, j ) );
nresult.putValue( i, j, w + nresult.value( i, j ) );
}
}
}
double fill= -1e31;
for ( int i=0; i0 ) {
sresult.putValue( i,j, sresult.value(i,j)/n );
} else {
sresult.putValue( i,j, fill );
}
}
}
DataSetUtil.copyDimensionProperties( ds, sresult );
nresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
nresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
sresult.putProperty( QDataSet.DEPEND_0, dep0_0 );
sresult.putProperty( QDataSet.DEPEND_1, dep1_0 );
sresult.putProperty( QDataSet.FILL_VALUE, fill );
sresult.putProperty( QDataSet.WEIGHTS, nresult );
sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" );
return sresult;
}
/**
* returns number of stddev from adjacent data.
* @param ds, rank 1 dataset.
* @param boxcarSize
* @return QDataSet
*/
public static QDataSet residuals(QDataSet ds, int boxcarSize) {
if (ds.rank() != 1) {
throw new IllegalArgumentException("rank must be 1");
}
QDataSet mean = BinAverage.boxcar(ds, boxcarSize);
QDataSet dres = Ops.pow(Ops.subtract(ds, mean), 2);
QDataSet var = Ops.sqrt(BinAverage.boxcar(dres, boxcarSize));
QDataSet res = Ops.divide(Ops.abs(Ops.subtract(ds, mean)), var);
return res;
}
/**
* run boxcar average over the dataset, returning a dataset of same geometry. Points near the edge are simply copied from the
* source dataset. The result dataset contains a property "weights" that is the weights for each point.
*
* @param ds a rank 1 dataset of size N
* @param size the number of adjacent bins to average
* @return rank 1 dataset of size N
*/
public static DDataSet boxcar(QDataSet ds, int size) {
int nn = ds.length();
int s2 = size / 2;
int s3 = s2 + size % 2; // one greater than s2 if s2 is odd.
if (ds.rank() != 1) {
if ( SemanticOps.isRank2Waveform(ds) ) {
DDataSet result= (DDataSet) ArrayDataSet.createRank2( double.class, ds.length(), ds.length(0) );
for ( int i=0; i=s2, these values will be clobbered.
//sums2.putValue(i, d*d);
weights.putValue(i, w);
if ( w>0 ) {
runningSum += d * w;
//runningSum2 += d*d;
runningWeight += w;
}
}
for (int i = s2; i < nn - s3; i++) {
sums.putValue(i, runningSum);
//sums2.putValue(i, runningSum2);
weights.putValue(i, runningWeight);
double d0 = ds.value(i - s2);
double w0 = wds.value(i - s2);
if ( w0==0 ) d0= 0;
double d = ds.value(i - s2 + size);
double w = wds.value(i - s2 + size);
if ( w==0 ) d= 0;
runningSum += d * w - d0 * w0;
//runningSum2 += d * d * w - d0 * d0 * w0; // DANGER-assumes small boxcar
runningWeight += w - w0;
}
// handle the end of the dataset by copying
for (int i = nn - s3; i < nn; i++) {
double d = ds.value(i);
double w = wds.value(i);
sums.putValue(i, d);
//sums2.putValue(i, d*d);
weights.putValue(i, w);
}
DDataSet result = sums;
//DDataSet resultVar= sums2;
Number fill= ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL ) );
if ( fill==null ) fill= -1e31;
for (int i = 0; i < nn; i++) {
double w= weights.value(i);
if ( w > 0) {
double s = result.value(i);
result.putValue(i, s / w);
//resultVar.putValue( i, ( Math.sqrt( resultVar.value(i) - s * s ) / weights.value(i)) );
} else {
result.putValue(i, fill.doubleValue() );
}
}
result.putProperty(QDataSet.WEIGHTS, weights);
//result.putProperty( QDataSet.DELTA_PLUS, resultVar );
//result.putProperty( QDataSet.DELTA_MINUS, resultVar );
result.putProperty(QDataSet.DEPEND_0, ds.property(QDataSet.DEPEND_0));
result.putProperty(QDataSet.FILL_VALUE, fill);
return result;
}
/**
* reduce the rank 1 dataset by averaging blocks of bins together
* @param ds rank 1 dataset with N points
* @param n0 number of bins in the result.
* @return rank 1 dataset with n0 points. Weights plane added.
* @see #rebin(org.das2.qds.QDataSet, int, int)
* @see #rebin(org.das2.qds.QDataSet, int, int, int)
*/
public static QDataSet rebin(QDataSet ds, int n0 ) {
DDataSet result = DDataSet.createRank1( n0);
DDataSet weights = DDataSet.createRank1( n0 );
QDataSet wds = DataSetUtil.weightsDataSet(ds);
int binSize0= ds.length() / n0;
double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue();
for (int i0 = 0; i0 < n0; i0++) {
int j0 = i0 * binSize0;
double s = 0, w = 0;
for (int k0 = 0; k0 < binSize0; k0++) {
double w1 = wds.value(j0 + k0);
if ( w1>0 ) {
w += w1;
s += w1 * ds.value(j0 + k0);
}
}
weights.putValue(i0, w);
result.putValue(i0, w == 0 ? fill : s / w);
}
result.putProperty(QDataSet.WEIGHTS, weights);
result.putProperty(QDataSet.FILL_VALUE, fill);
QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0);
if (dep0 != null) {
result.putProperty(QDataSet.DEPEND_0, rebin(dep0, binSize0));
}
DataSetUtil.copyDimensionProperties( ds, result );
return result;
}
/**
* reduce the rank 2 dataset by averaging blocks of bins together. depend
* datasets reduced as well.
* @param ds rank 2 dataset with M by N points
* @param n0 the number of bins in the result. Note this changed in v2013a_6 from earlier versions of this routine.
* @param n1 the number of bins in the result.
* @return rank 2 dataset with n0 by n1 points, with a weights plane.
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
*/
public static QDataSet rebin(QDataSet ds, int n0, int n1) {
DDataSet result = DDataSet.createRank2( n0, n1);
DDataSet weights = DDataSet.createRank2( n0, n1);
QDataSet wds = DataSetUtil.weightsDataSet(ds);
double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue();
int binSize0= ds.length() / n0;
int binSize1= ds.length(0) / n1;
if ( binSize0==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data");
if ( binSize1==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data");
for (int i0 = 0; i0 < n0; i0++) {
for (int i1 = 0; i1 < n1; i1++) {
int j0 = i0 * binSize0;
int j1 = i1 * binSize1;
double s = 0, w = 0;
for (int k0 = 0; k0 < binSize0; k0++) {
for (int k1 = 0; k1 < binSize1; k1++) {
double w1 = wds.value(j0 + k0, j1 + k1);
if ( w1>0 ) {
w += w1;
s += w1 * ds.value(j0 + k0, j1 + k1);
}
}
}
weights.putValue(i0, i1, w);
result.putValue(i0, i1, w == 0 ? fill : s / w);
}
}
result.putProperty(QDataSet.WEIGHTS, weights);
result.putProperty(QDataSet.FILL_VALUE, fill);
QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0);
if (dep0 != null) {
result.putProperty(QDataSet.DEPEND_0, rebin(dep0, n0));
}
QDataSet dep1 = (QDataSet) ds.property(QDataSet.DEPEND_1);
if (dep1 != null) {
if ( dep1.rank()!=1 ) throw new IllegalArgumentException("dep1 must be rank 1");
result.putProperty(QDataSet.DEPEND_1, rebin(dep1, n1));
}
DataSetUtil.copyDimensionProperties( ds, result );
return result;
}
/**
* reduce the rank 3 dataset by averaging blocks of bins together. depend
* datasets reduced as well.
* @param ds rank 3 dataset
* @param n0 the number of bins in the result.
* @param n1 the number of bins in the result.
* @param n2 the number of bins in the result.
* @return rank 3 dataset ds[n0,n1,n2]
* @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet)
* @see #rebin(org.das2.qds.QDataSet, int)
*/
public static QDataSet rebin(QDataSet ds, int n0, int n1, int n2) {
DDataSet result = DDataSet.createRank3( n0, n1, n2);
DDataSet weights = DDataSet.createRank3( n0, n1, n2);
QDataSet wds = DataSetUtil.weightsDataSet(ds);
double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue();
int binSize0= ds.length() / n0;
int binSize1= ds.length(0) / n1;
int binSize2= ds.length(0,0) / n2;
if ( binSize0==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data");
if ( binSize1==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data");
if ( binSize2==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data");
for (int i0 = 0; i0 < n0; i0++) {
for (int i1 = 0; i1 < n1; i1++) {
for (int i2 = 0; i2 < n2; i2++) {
int j0 = i0 * binSize0;
int j1 = i1 * binSize1;
int j2 = i2 * binSize2;
double s = 0, w = 0;
for (int k0 = 0; k0 < binSize0; k0++) {
for (int k1 = 0; k1 < binSize1; k1++) {
for (int k2 = 0; k2 < binSize2; k2++) {
double w1 = wds.value(j0 + k0, j1 + k1, j2 + k2 );
if ( w1>0 ) {
w += w1;
s += w1 * ds.value(j0 + k0, j1 + k1, j2 + k2 );
}
}
}
}
weights.putValue(i0, i1, i2, w);
result.putValue(i0, i1, i2, w == 0 ? fill : s / w);
}
}
}
result.putProperty(QDataSet.WEIGHTS, weights);
result.putProperty(QDataSet.FILL_VALUE, fill);
QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0);
if (dep0 != null) {
result.putProperty(QDataSet.DEPEND_0, rebin(dep0, n0));
}
QDataSet dep1 = (QDataSet) ds.property(QDataSet.DEPEND_1);
if (dep1 != null) {
if ( dep1.rank()!=1 ) throw new IllegalArgumentException("dep1 must be rank 1");
result.putProperty(QDataSet.DEPEND_1, rebin(dep1, n1));
}
QDataSet dep2 = (QDataSet) ds.property(QDataSet.DEPEND_2);
if (dep2 != null) {
if ( dep2.rank()!=1 ) throw new IllegalArgumentException("dep2 must be rank 1");
result.putProperty(QDataSet.DEPEND_2, rebin(dep2, n2));
}
DataSetUtil.copyDimensionProperties( ds, result );
return result;
}
}