/* * BinAverage.java * * Created on May 30, 2007, 8:56 AM * * To change this template, choose Tools | Template Manager * and open the template in the editor. */ package org.das2.qds.util; import java.util.Arrays; import org.das2.datum.Units; import org.das2.datum.UnitsConverter; import org.das2.qds.ArrayDataSet; import org.das2.qds.DDataSet; import org.das2.qds.DataSetOps; import org.das2.qds.QDataSet; import org.das2.qds.DataSetUtil; import org.das2.qds.IDataSet; import org.das2.qds.SemanticOps; import org.das2.qds.WeightsDataSet; import org.das2.qds.ops.Ops; import static org.das2.qds.util.BinAverage.rebin; /** * utility class providing methods for bin averaging. * @author jbf */ public class BinAverage { private BinAverage() { } /** * returns a dataset with tags specified by newTags0. Data from ds * are averaged together when they fall into the same bin. Note the result * will have the property WEIGHTS. * * @param ds a rank 1 dataset, no fill * @param newTags0 a rank 1 tags dataset, that must be MONOTONIC. * @return rank 1 dataset with DEPEND_0 = newTags. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #binAverage(QDataSet, QDataSet ) */ public static DDataSet rebin(QDataSet ds, QDataSet newTags0) { return binAverage( ds, newTags0 ); } /** * returns a dataset with tags specified by newTags0. Data from ds * are averaged together when they fall into the same bin. Note the result * will have the property WEIGHTS. * * @param ds a rank 1 dataset, no fill * @param newTags0 a rank 1 tags dataset, that must be MONOTONIC. * @return rank 1 dataset with DEPEND_0 = newTags. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #binAverage(QDataSet, QDataSet ) * @see #binAverage(QDataSet, QDataSet, QDataSet ) */ public static DDataSet binAverage(QDataSet ds, QDataSet newTags0 ) { QDataSet dstags = (QDataSet) ds.property(QDataSet.DEPEND_0); QDataSet wds = DataSetUtil.weightsDataSet(ds); double fill = ((Number) wds.property(QDataSet.FILL_VALUE)).doubleValue(); DDataSet result = DDataSet.createRank1(newTags0.length()); DDataSet weights = DDataSet.createRank1(newTags0.length()); int ibin = -1; for (int i = 0; i < ds.length(); i++) { ibin = DataSetUtil.closest(newTags0, dstags.value(i), ibin); double d = ds.value(i); double w = wds.value(i); if ( w>0 ) { double s = result.value(ibin); result.putValue(ibin, s + d * w); double n = weights.value(ibin); weights.putValue(ibin, n + w); } } for (int i = 0; i < result.length(); i++) { if (weights.value(i) > 0) { result.putValue(i, result.value(i) / weights.value(i)); } else { result.putValue(i, fill); } } weights.putProperty(QDataSet.DEPEND_0,newTags0); result.putProperty(QDataSet.DEPEND_0, newTags0); result.putProperty(QDataSet.FILL_VALUE,fill); result.putProperty(QDataSet.WEIGHTS,weights); return result; } /** * returns a dataset with tags specified by newTags. * @param ds a rank 2 dataset. If it's a bundle, then rebinBundle is called. * @param newTags0 rank 1 monotonic dataset * @param newTags1 rank 1 monotonic dataset * @return rank 2 dataset with newTags0 for the DEPEND_0 tags, newTags1 for the DEPEND_1 tags. WEIGHTS property contains the weights. * @see #rebin(org.das2.qds.QDataSet, int, int) * @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @deprecated see binAverage * @see #binAverage(QDataSet, QDataSet, QDataSet ) */ public static DDataSet rebin(QDataSet ds, QDataSet newTags0, QDataSet newTags1) { return binAverage( ds, newTags0, newTags1 ); } /** * returns a dataset with tags specified by newTags, where linear averages * of the points in each bin are returned. * @param ds a rank 2 dataset. If it's a bundle, then rebinBundle is called. * @param newTags0 rank 1 monotonic dataset * @param newTags1 rank 1 monotonic dataset * @return rank 2 dataset with newTags0 for the DEPEND_0 tags, newTags1 for the DEPEND_1 tags. WEIGHTS property contains the weights. * @see #rebin(org.das2.qds.QDataSet, int, int) * @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #binAverage(org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #binAverage(org.das2.qds.QDataSet ) */ public static DDataSet binAverage(QDataSet ds, QDataSet newTags0, QDataSet newTags1) { if (ds.rank() != 2) { throw new IllegalArgumentException("ds must be rank2"); } if ( SemanticOps.isBundle(ds) ) { return rebinBundle( ds, newTags0, newTags1 ); } QDataSet dstags0 = (QDataSet) ds.property(QDataSet.DEPEND_0); if ( dstags0==null ) { throw new IllegalArgumentException("expected ds to have DEPEND_0"); } QDataSet wds = DataSetUtil.weightsDataSet(ds); double fill = ((Number) wds.property(QDataSet.FILL_VALUE)).doubleValue(); DDataSet result = DDataSet.createRank2(newTags0.length(), newTags1.length()); DDataSet weights = DDataSet.createRank2(newTags0.length(), newTags1.length()); QDataSet ibin1CacheDs = null; int[] ibins1 = null; int ibin0 = -1; for (int i = 0; i < ds.length(); i++) { QDataSet ds1= ds.slice(i); QDataSet wds1= wds.slice(i); ibin0 = DataSetUtil.closest(newTags0, dstags0.value(i), ibin0); //QDataSet dstags1 = (QDataSet) ds.property(QDataSet.DEPEND_1, i); QDataSet dstags1 = (QDataSet) ds1.property(QDataSet.DEPEND_0); if (dstags1 != ibin1CacheDs) { ibins1 = new int[dstags1.length()]; Arrays.fill(ibins1, -1); for (int j = 0; j < dstags1.length(); j++) { ibins1[j] = DataSetUtil.closest(newTags1, dstags1.value(j), ibins1[j]); } ibin1CacheDs = dstags1; } for (int j = 0; j < dstags1.length(); j++) { int ibin1 = ibins1[j]; double d = ds1.value(j); double w = wds1.value(j); if ( w>0 ) { double s = result.value(ibin0, ibin1); result.putValue(ibin0, ibin1, s + w * d); double n = weights.value(ibin0, ibin1); weights.putValue(ibin0, ibin1, n + w); } } } for (int i = 0; i < result.length(); i++) { for (int j = 0; j < result.length(i); j++) { if (weights.value(i, j) > 0) { result.putValue(i, j, result.value(i, j) / weights.value(i, j)); } else { result.putValue(i, j, fill); } } } weights.putProperty(QDataSet.DEPEND_0, newTags0); weights.putProperty(QDataSet.DEPEND_1, newTags1); result.putProperty(QDataSet.DEPEND_0, newTags0); result.putProperty(QDataSet.DEPEND_1, newTags1); result.putProperty(QDataSet.FILL_VALUE, fill ); result.putProperty(QDataSet.WEIGHTS, weights); return result; } /** * return true if the data is linearly spaced with the given base and offset. * @param dep0 * @param xscal * @param xbase * @return true if the data is linearly spaced with the given base and offset. */ private static boolean isLinearlySpaced( QDataSet dep0, double xscal, double xbase ) { int nx= dep0.length(); for ( int i=0; i0 ) { // accumulate. UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 ); UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 ); UnitsConverter zuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(2), dep2 ); for ( int ids=0; ids0 ) { double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0)); double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1)); double z= zuc.convert( zlog ? Math.log10( ds.value(ids,2) ) : ds.value(ids,2)); double f= ds.value(ids,3); int i= (int)( ( x-xbase ) / xscal ); int j= (int)( ( y-ybase ) / yscal ); int k= (int)( ( z-zbase ) / zscal ); if ( i<0 || j<0 || k<0 ) continue; if ( i>=nx || j>=ny || k>=nz ) continue; sresult.putValue( i, j, k, f + sresult.value( i, j, k ) ); nresult.putValue( i, j, k, w + nresult.value( i, j, k ) ); } } } double fill= -1e31; // normalize. The weights will be in the WEIGHTS property for ( int i=0; i0 ) { sresult.putValue( i,j,k, sresult.value(i,j,k)/n ); } else { sresult.putValue( i,j,k, fill ); } } } } DataSetUtil.copyDimensionProperties( ds, sresult ); nresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); nresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); nresult.putProperty( QDataSet.DEPEND_2, dep2_0 ); sresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); sresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); sresult.putProperty( QDataSet.DEPEND_2, dep2_0 ); sresult.putProperty( QDataSet.FILL_VALUE, fill ); sresult.putProperty( QDataSet.WEIGHTS, nresult ); sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" ); return sresult; } /** * takes rank 2 bundle (x,y,z) and averages it into table z(x,y). This is * similar to what happens in the spectrogram routine. * @param ds rank 2 bundle(x,y,z) * @param dep0 the rank 1 depend0 for the result, which must be uniformly spaced. * @param dep1 the rank 1 depend1 for the result, which must be uniformly spaced. * @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @deprecated see binAverageBundle * @see #binAverageBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static DDataSet rebinBundle( QDataSet ds, QDataSet dep0, QDataSet dep1 ) { return binAverageBundle( ds, dep0, dep1 ); } /** * takes rank 2 bundle (x,y,z) and averages it into table z(x,y). This is * similar to what happens in the spectrogram routine. * @param ds rank 2 bundle(x,y,z) * @param dep0 the rank 1 depend0 for the result, which must be uniform in log or linear space. * @param dep1 the rank 1 depend1 for the result, which must be uniform in log or linear space. * @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see https://github.com/autoplot/dev/blob/master/demos/2021/20210529/demoBinAverageBundle.jy */ public static DDataSet binAverageBundle(QDataSet ds, QDataSet dep0, QDataSet dep1) { DDataSet sresult = DDataSet.createRank2(dep0.length(), dep1.length()); IDataSet nresult = IDataSet.createRank2(dep0.length(), dep1.length()); QDataSet wds = DataSetUtil.weightsDataSet(DataSetOps.slice1(ds, 2)); QDataSet dep0_0 = dep0; QDataSet dep1_0 = dep1; boolean xlog = false; double xscal = dep0.value(1) - dep0.value(0); double xbase = dep0.value(0) - (xscal / 2); int nx = dep0.length(); if (!isLinearlySpaced(dep0, xscal, xbase)) { xscal = Math.log10(dep0.value(1) / dep0.value(0)); xbase = Math.log10(xbase); dep0 = Ops.log10(dep0); if (!isLinearlySpaced(dep0, xscal, xbase)) { throw new IllegalArgumentException("dep0 must be uniformly spaced."); } else { xlog = true; } } boolean ylog = false; double yscal = dep1.value(1) - dep1.value(0); double ybase = dep1.value(0) - (yscal / 2); int ny = dep1.length(); if (!isLinearlySpaced(dep1, yscal, ybase)) { yscal = Math.log10( dep1.value(1) / dep1.value(0) ); ybase = Math.log10( dep1.value(0) ) - (yscal / 2); dep1 = Ops.log10(dep1); if (!isLinearlySpaced(dep1, yscal, ybase)) { isLinearlySpaced(dep1, yscal, ybase); throw new IllegalArgumentException("dep1 must be uniformly spaced."); } else { ylog = true; } } // accumulate if ( ds.length()>0 ) { UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 ); if ( xuc==UnitsConverter.LOOSE_IDENTITY && SemanticOps.getUnits(ds.slice(0).slice(0))==Units.degrees ) { throw new IllegalArgumentException("no units provided when one dataset's units are degrees, unidentified units could be radians or degrees."); } UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 ); for ( int ids=0; ids0 ) { double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0) ); double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1) ); double z= ds.value(ids,2); int i= (int)( ( x-xbase ) / xscal ); int j= (int)( ( y-ybase ) / yscal ); if ( i<0 || j<0 ) continue; if ( i>=nx || j>=ny ) continue; sresult.putValue( i, j, z + sresult.value( i, j ) ); nresult.putValue( i, j, w + nresult.value( i, j ) ); } } } // normalize double fill= -1e31; for ( int i=0; i0 ) { sresult.putValue( i,j, sresult.value(i,j)/n ); } else { sresult.putValue( i,j, fill ); } } } DataSetUtil.copyDimensionProperties( ds, sresult ); nresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); nresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); sresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); sresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); sresult.putProperty( QDataSet.FILL_VALUE, fill ); sresult.putProperty( QDataSet.WEIGHTS, nresult ); sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" ); return sresult; } /** * takes rank 2 bundle (x,y,z) and averages in table z(x,y) and computes the * mean average deviation in each bin. * @param ads rank 2 grid of averages * @param ds rank 2 bundle(x,y,z) * @return rank 2 dataset of z averages with depend_0 and depend_1. WEIGHTS contains the total weight for each bin. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #rebinBundle(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see Ops#meanAverageDeviation(org.das2.qds.QDataSet) * @see https://github.com/autoplot/dev/blob/master/demos/2021/20210529/demoBinMeanAverageDeviation.jy */ public static DDataSet binMeanAverageDeviation( QDataSet ads, QDataSet ds ) { if ( ads.rank()!=2 ) { throw new IllegalArgumentException("ads must be rank 2"); } if ( ds.length(0)!=3 ) { throw new IllegalArgumentException("ds must be ds[n,3]"); } QDataSet dep0= (QDataSet)ads.property(QDataSet.DEPEND_0); QDataSet dep1= (QDataSet)ads.property(QDataSet.DEPEND_1); DDataSet sresult = DDataSet.createRank2(dep0.length(), dep1.length()); IDataSet nresult = IDataSet.createRank2(dep0.length(), dep1.length()); QDataSet wds = DataSetUtil.weightsDataSet(DataSetOps.slice1(ds, 2)); QDataSet dep0_0 = dep0; QDataSet dep1_0 = dep1; boolean xlog = false; double xscal = dep0.value(1) - dep0.value(0); double xbase = dep0.value(0) - (xscal / 2); int nx = dep0.length(); if (!isLinearlySpaced(dep0, xscal, xbase)) { xscal = Math.log10(dep0.value(1) / dep0.value(0)); xbase = Math.log10(xbase); dep0 = Ops.log10(dep0); if (!isLinearlySpaced(dep0, xscal, xbase)) { throw new IllegalArgumentException("dep0 must be uniformly spaced."); } else { xlog = true; } } boolean ylog = false; double yscal = dep1.value(1) - dep1.value(0); double ybase = dep1.value(0) - (yscal / 2); int ny = dep1.length(); if (!isLinearlySpaced(dep1, yscal, ybase)) { yscal = Math.log10(dep1.value(1) / dep1.value(0)); ybase = Math.log10(ybase); dep1 = Ops.log10(dep1); if (!isLinearlySpaced(dep1, yscal, ybase)) { isLinearlySpaced(dep1, yscal, ybase); throw new IllegalArgumentException("dep1 must be uniformly spaced."); } else { ylog = true; } } if ( ds.length()>0 ) { UnitsConverter xuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(0), dep0 ); UnitsConverter yuc= SemanticOps.getLooseUnitsConverter( ds.slice(0).slice(1), dep1 ); for ( int ids=0; ids0 ) { double x= xuc.convert( xlog ? Math.log10( ds.value(ids,0) ) : ds.value(ids,0) ); double y= yuc.convert( ylog ? Math.log10( ds.value(ids,1) ) : ds.value(ids,1) ); int i= (int)( ( x-xbase ) / xscal ); int j= (int)( ( y-ybase ) / yscal ); if ( i<0 || j<0 ) continue; if ( i>=nx || j>=ny ) continue; double z= Math.abs( ds.value(ids,2) - ads.value(i,j) ); sresult.putValue( i, j, z + sresult.value( i, j ) ); nresult.putValue( i, j, w + nresult.value( i, j ) ); } } } double fill= -1e31; for ( int i=0; i0 ) { sresult.putValue( i,j, sresult.value(i,j)/n ); } else { sresult.putValue( i,j, fill ); } } } DataSetUtil.copyDimensionProperties( ds, sresult ); nresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); nresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); sresult.putProperty( QDataSet.DEPEND_0, dep0_0 ); sresult.putProperty( QDataSet.DEPEND_1, dep1_0 ); sresult.putProperty( QDataSet.FILL_VALUE, fill ); sresult.putProperty( QDataSet.WEIGHTS, nresult ); sresult.putProperty( QDataSet.RENDER_TYPE, "nnSpectrogram" ); return sresult; } /** * returns number of stddev from adjacent data. * @param ds, rank 1 dataset. * @param boxcarSize * @return QDataSet */ public static QDataSet residuals(QDataSet ds, int boxcarSize) { if (ds.rank() != 1) { throw new IllegalArgumentException("rank must be 1"); } QDataSet mean = BinAverage.boxcar(ds, boxcarSize); QDataSet dres = Ops.pow(Ops.subtract(ds, mean), 2); QDataSet var = Ops.sqrt(BinAverage.boxcar(dres, boxcarSize)); QDataSet res = Ops.divide(Ops.abs(Ops.subtract(ds, mean)), var); return res; } /** * run boxcar average over the dataset, returning a dataset of same geometry. Points near the edge are simply copied from the * source dataset. The result dataset contains a property "weights" that is the weights for each point. * * @param ds a rank 1 dataset of size N * @param size the number of adjacent bins to average * @return rank 1 dataset of size N */ public static DDataSet boxcar(QDataSet ds, int size) { int nn = ds.length(); int s2 = size / 2; int s3 = s2 + size % 2; // one greater than s2 if s2 is odd. if (ds.rank() != 1) { if ( SemanticOps.isRank2Waveform(ds) ) { DDataSet result= (DDataSet) ArrayDataSet.createRank2( double.class, ds.length(), ds.length(0) ); for ( int i=0; i=s2, these values will be clobbered. //sums2.putValue(i, d*d); weights.putValue(i, w); if ( w>0 ) { runningSum += d * w; //runningSum2 += d*d; runningWeight += w; } } for (int i = s2; i < nn - s3; i++) { sums.putValue(i, runningSum); //sums2.putValue(i, runningSum2); weights.putValue(i, runningWeight); double d0 = ds.value(i - s2); double w0 = wds.value(i - s2); if ( w0==0 ) d0= 0; double d = ds.value(i - s2 + size); double w = wds.value(i - s2 + size); if ( w==0 ) d= 0; runningSum += d * w - d0 * w0; //runningSum2 += d * d * w - d0 * d0 * w0; // DANGER-assumes small boxcar runningWeight += w - w0; } // handle the end of the dataset by copying for (int i = nn - s3; i < nn; i++) { double d = ds.value(i); double w = wds.value(i); sums.putValue(i, d); //sums2.putValue(i, d*d); weights.putValue(i, w); } DDataSet result = sums; //DDataSet resultVar= sums2; Number fill= ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL ) ); if ( fill==null ) fill= -1e31; for (int i = 0; i < nn; i++) { double w= weights.value(i); if ( w > 0) { double s = result.value(i); result.putValue(i, s / w); //resultVar.putValue( i, ( Math.sqrt( resultVar.value(i) - s * s ) / weights.value(i)) ); } else { result.putValue(i, fill.doubleValue() ); } } result.putProperty(QDataSet.WEIGHTS, weights); //result.putProperty( QDataSet.DELTA_PLUS, resultVar ); //result.putProperty( QDataSet.DELTA_MINUS, resultVar ); result.putProperty(QDataSet.DEPEND_0, ds.property(QDataSet.DEPEND_0)); result.putProperty(QDataSet.FILL_VALUE, fill); return result; } /** * reduce the rank 1 dataset by averaging blocks of bins together * @param ds rank 1 dataset with N points * @param n0 number of bins in the result. * @return rank 1 dataset with n0 points. Weights plane added. * @see #rebin(org.das2.qds.QDataSet, int, int) * @see #rebin(org.das2.qds.QDataSet, int, int, int) */ public static QDataSet rebin(QDataSet ds, int n0 ) { DDataSet result = DDataSet.createRank1( n0); DDataSet weights = DDataSet.createRank1( n0 ); QDataSet wds = DataSetUtil.weightsDataSet(ds); int binSize0= ds.length() / n0; double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue(); for (int i0 = 0; i0 < n0; i0++) { int j0 = i0 * binSize0; double s = 0, w = 0; for (int k0 = 0; k0 < binSize0; k0++) { double w1 = wds.value(j0 + k0); if ( w1>0 ) { w += w1; s += w1 * ds.value(j0 + k0); } } weights.putValue(i0, w); result.putValue(i0, w == 0 ? fill : s / w); } result.putProperty(QDataSet.WEIGHTS, weights); result.putProperty(QDataSet.FILL_VALUE, fill); QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0); if (dep0 != null) { result.putProperty(QDataSet.DEPEND_0, rebin(dep0, binSize0)); } DataSetUtil.copyDimensionProperties( ds, result ); return result; } /** * reduce the rank 2 dataset by averaging blocks of bins together. depend * datasets reduced as well. * @param ds rank 2 dataset with M by N points * @param n0 the number of bins in the result. Note this changed in v2013a_6 from earlier versions of this routine. * @param n1 the number of bins in the result. * @return rank 2 dataset with n0 by n1 points, with a weights plane. * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) */ public static QDataSet rebin(QDataSet ds, int n0, int n1) { DDataSet result = DDataSet.createRank2( n0, n1); DDataSet weights = DDataSet.createRank2( n0, n1); QDataSet wds = DataSetUtil.weightsDataSet(ds); double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue(); int binSize0= ds.length() / n0; int binSize1= ds.length(0) / n1; if ( binSize0==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data"); if ( binSize1==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data"); for (int i0 = 0; i0 < n0; i0++) { for (int i1 = 0; i1 < n1; i1++) { int j0 = i0 * binSize0; int j1 = i1 * binSize1; double s = 0, w = 0; for (int k0 = 0; k0 < binSize0; k0++) { for (int k1 = 0; k1 < binSize1; k1++) { double w1 = wds.value(j0 + k0, j1 + k1); if ( w1>0 ) { w += w1; s += w1 * ds.value(j0 + k0, j1 + k1); } } } weights.putValue(i0, i1, w); result.putValue(i0, i1, w == 0 ? fill : s / w); } } result.putProperty(QDataSet.WEIGHTS, weights); result.putProperty(QDataSet.FILL_VALUE, fill); QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0); if (dep0 != null) { result.putProperty(QDataSet.DEPEND_0, rebin(dep0, n0)); } QDataSet dep1 = (QDataSet) ds.property(QDataSet.DEPEND_1); if (dep1 != null) { if ( dep1.rank()!=1 ) throw new IllegalArgumentException("dep1 must be rank 1"); result.putProperty(QDataSet.DEPEND_1, rebin(dep1, n1)); } DataSetUtil.copyDimensionProperties( ds, result ); return result; } /** * reduce the rank 3 dataset by averaging blocks of bins together. depend * datasets reduced as well. * @param ds rank 3 dataset * @param n0 the number of bins in the result. * @param n1 the number of bins in the result. * @param n2 the number of bins in the result. * @return rank 3 dataset ds[n0,n1,n2] * @see #rebin(org.das2.qds.QDataSet, org.das2.qds.QDataSet, org.das2.qds.QDataSet) * @see #rebin(org.das2.qds.QDataSet, int) */ public static QDataSet rebin(QDataSet ds, int n0, int n1, int n2) { DDataSet result = DDataSet.createRank3( n0, n1, n2); DDataSet weights = DDataSet.createRank3( n0, n1, n2); QDataSet wds = DataSetUtil.weightsDataSet(ds); double fill = ((Number) wds.property( WeightsDataSet.PROP_SUGGEST_FILL )).doubleValue(); int binSize0= ds.length() / n0; int binSize1= ds.length(0) / n1; int binSize2= ds.length(0,0) / n2; if ( binSize0==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data"); if ( binSize1==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data"); if ( binSize2==0 ) throw new IllegalArgumentException("rebin can only be used to reduce data"); for (int i0 = 0; i0 < n0; i0++) { for (int i1 = 0; i1 < n1; i1++) { for (int i2 = 0; i2 < n2; i2++) { int j0 = i0 * binSize0; int j1 = i1 * binSize1; int j2 = i2 * binSize2; double s = 0, w = 0; for (int k0 = 0; k0 < binSize0; k0++) { for (int k1 = 0; k1 < binSize1; k1++) { for (int k2 = 0; k2 < binSize2; k2++) { double w1 = wds.value(j0 + k0, j1 + k1, j2 + k2 ); if ( w1>0 ) { w += w1; s += w1 * ds.value(j0 + k0, j1 + k1, j2 + k2 ); } } } } weights.putValue(i0, i1, i2, w); result.putValue(i0, i1, i2, w == 0 ? fill : s / w); } } } result.putProperty(QDataSet.WEIGHTS, weights); result.putProperty(QDataSet.FILL_VALUE, fill); QDataSet dep0 = (QDataSet) ds.property(QDataSet.DEPEND_0); if (dep0 != null) { result.putProperty(QDataSet.DEPEND_0, rebin(dep0, n0)); } QDataSet dep1 = (QDataSet) ds.property(QDataSet.DEPEND_1); if (dep1 != null) { if ( dep1.rank()!=1 ) throw new IllegalArgumentException("dep1 must be rank 1"); result.putProperty(QDataSet.DEPEND_1, rebin(dep1, n1)); } QDataSet dep2 = (QDataSet) ds.property(QDataSet.DEPEND_2); if (dep2 != null) { if ( dep2.rank()!=1 ) throw new IllegalArgumentException("dep2 must be rank 1"); result.putProperty(QDataSet.DEPEND_2, rebin(dep2, n2)); } DataSetUtil.copyDimensionProperties( ds, result ); return result; } }